50 tens
5000 thousands
50000 ten thousand
50 tens
5
Hope this helps
1. y=4x
2. y=-7x-8
3. y=5x+63
4. y=¾x+8
5. y=-3x-½
6. y=1x-3
7. y=2
8. y=-2x+1
9. y=4x+7
wor<u>k for 9</u>
1=4(2)+b
1= 8 +b
-8 -8
7=b
10. y=0
11. y=¾x+6
<u>work </u><u>for </u><u>1</u><u>1</u>
<em>9</em><em> </em><em>=¾(4)+b</em>
<em>=¾(4)+b9</em><em> </em><em>= 3</em><em> </em><em> </em><em> </em><em>+b</em>
<em>+b-3=-3</em>
<em>+b-3=-3 6=</em><em>b</em>
<em>1</em><em>2</em><em>.</em><em> </em><em>sorry </em><em>I </em><em>haven't</em><em> </em><em>done </em><em>thai </em><em>one </em><em>in </em><em>a </em><em>while.</em>
<em>I </em><em>was </em><em>too </em><em>lazy </em><em>to </em><em>include</em><em> </em><em>the </em><em>work </em><em>for </em><em>the </em><em>first </em><em>couple</em><em> </em><em>of </em><em>answers</em><em> </em><em>although</em><em> </em><em>I </em><em>recommend</em><em>.</em><em> </em>
<em>M</em>
<em>A</em>
<em>T</em>
<em>H</em>
<em>W</em>
<em>A</em>
<em>Y</em>
<em>they </em><em>include</em><em> </em><em>work </em><em>with </em><em>ads</em>
Answer:
v=5.42m/s
Step-by-Step Explanation:
We can use conservation of energy to solve this
mgh=1/2mv^2
2gh=v^2
v=sqrt(2gh)
v=sqrt[2*9.8m/s^2*(6.5-5)]
v=5.42m/s
Answer:
- (-1, -32) absolute minimum
- (0, 0) relative maximum
- (2, -32) absolute minimum
- (+∞, +∞) absolute maximum (or "no absolute maximum")
Step-by-step explanation:
There will be extremes at the ends of the domain interval, and at turning points where the first derivative is zero.
The derivative is ...
h'(t) = 24t^2 -48t = 24t(t -2)
This has zeros at t=0 and t=2, so that is where extremes will be located.
We can determine relative and absolute extrema by evaluating the function at the interval ends and at the turning points.
h(-1) = 8(-1)²(-1-3) = -32
h(0) = 8(0)(0-3) = 0
h(2) = 8(2²)(2 -3) = -32
h(∞) = 8(∞)³ = ∞
The absolute minimum is -32, found at t=-1 and at t=2. The absolute maximum is ∞, found at t→∞. The relative maximum is 0, found at t=0.
The extrema are ...
- (-1, -32) absolute minimum
- (0, 0) relative maximum
- (2, -32) absolute minimum
- (+∞, +∞) absolute maximum
_____
Normally, we would not list (∞, ∞) as being an absolute maximum, because it is not a specific value at a specific point. Rather, we might say there is no absolute maximum.