The shortest length is given by the function for the perimeter of the
rectangular table.
- The shortest length of trim he could use is <u>536.66 cm</u>
<h3>Method used for finding the shortest length of trim</h3>
The given parameter;
Area of the rectangular table Karma is building, <em>A</em> = <u>18,000 cm²</u>
Required:
The shortest length of trim he could use which he wants to put around the four edges.
Solution:
Let <em>l</em> represent the length of the table, and let <em>w</em> represent the width, therefore;
Perimeter of the table, <em>P</em> = 2·l + 2·w
Area, <em>A</em> = l × w
Which gives;
18,000 = l × w
![l = \dfrac{18,000}{w}](https://tex.z-dn.net/?f=l%20%3D%20%5Cdfrac%7B18%2C000%7D%7Bw%7D)
Which gives;
![P = 2 \cdot \dfrac{18,000}{w} + 2 \cdot w](https://tex.z-dn.net/?f=P%20%3D%202%20%5Ccdot%20%5Cdfrac%7B18%2C000%7D%7Bw%7D%20%2B%202%20%5Ccdot%20w)
At the minimum point, we have;
![\dfrac{d}{dw} P = \dfrac{d}{dw} \left(2 \cdot \dfrac{18,000}{w} + 2 \cdot w\right)= \mathbf{\dfrac{2 \cdot w^2 - 36,000}{w^2} }= 0](https://tex.z-dn.net/?f=%5Cdfrac%7Bd%7D%7Bdw%7D%20P%20%3D%20%5Cdfrac%7Bd%7D%7Bdw%7D%20%5Cleft%282%20%5Ccdot%20%5Cdfrac%7B18%2C000%7D%7Bw%7D%20%2B%202%20%5Ccdot%20w%5Cright%29%3D%20%5Cmathbf%7B%5Cdfrac%7B2%20%5Ccdot%20w%5E2%20-%2036%2C000%7D%7Bw%5E2%7D%20%7D%3D%200)
Which gives;
2·w² - 36,000 = w² × 0 = 0
2·w² = 36,000
![w^2 = \dfrac{36,000}{2} = 18,000](https://tex.z-dn.net/?f=w%5E2%20%3D%20%5Cdfrac%7B36%2C000%7D%7B2%7D%20%3D%2018%2C000)
The width of the rectangular table, <em>w</em> = √(18,000)
![Length \ of \ the \ table\ l = \dfrac{18,000}{\sqrt{18,000} } = \sqrt{18,000}](https://tex.z-dn.net/?f=Length%20%5C%20of%20%5C%20the%20%5C%20table%5C%20l%20%3D%20%5Cdfrac%7B18%2C000%7D%7B%5Csqrt%7B18%2C000%7D%20%7D%20%3D%20%5Csqrt%7B18%2C000%7D)
Therefore;
The perimeter of the table, P ≈ 2 × √(18,000) + 2 × √(18,000) ≈ 536.656
The length of trim required = The perimeter of the rectangular table, <em>P</em>
Therefore;
- The shortest length of the trim he could use, given to the nearest hundredth is <u>536.66 cm</u>
Learn more about area and perimeter of a figure here:
brainly.com/question/9135929