Answer:
y = 12
Step-by-step explanation:
A line parallel to y = 6 is, like y = 6, horizontal.  Such a line passing through (10,12) is y = 12.
 
        
             
        
        
        
Answer:
c
Step-by-step explanation:
 
        
                    
             
        
        
        
1
 
Simplify \frac{1}{2}\imath n(x+3)21ın(x+3) to \frac{\imath n(x+3)}{2}2ın(x+3)
\frac{\imath n(x+3)}{2}-\imath nx=02ın(x+3)−ınx=0
2
 
Add \imath nxınx to both sides
\frac{\imath n(x+3)}{2}=\imath nx2ın(x+3)=ınx
3
 
Multiply both sides by 22
\imath n(x+3)=\imath nx\times 2ın(x+3)=ınx×2
4
 
Regroup terms
\imath n(x+3)=nx\times 2\imathın(x+3)=nx×2ı
5
 
Cancel \imathı on both sides
n(x+3)=nx\times 2n(x+3)=nx×2
6
 
Divide both sides by nn
x+3=\frac{nx\times 2}{n}x+3=nnx×2
7
 
Subtract 33 from both sides
x=\frac{nx\times 2}{n}-3x=nnx×2−3