The standard form of a quadratic equation is

, while the vertex form is:

, where (h, k) is the vertex of the parabola.
What we want is to write

as

First, we note that all the three terms have a factor of 3, so we factorize it and write:

.
Second, we notice that

are the terms produced by

, without the 9. So we can write:

, and substituting in

we have:
![\displaystyle{ y=3(x^2-6x-2)=3[(x-3)^2-9-2]=3[(x-3)^2-11]](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%20y%3D3%28x%5E2-6x-2%29%3D3%5B%28x-3%29%5E2-9-2%5D%3D3%5B%28x-3%29%5E2-11%5D)
.
Finally, distributing 3 over the two terms in the brackets we have:
![y=3[x-3]^2-33](https://tex.z-dn.net/?f=y%3D3%5Bx-3%5D%5E2-33)
.
Answer:
Answer:
-- Proved

Step-by-step explanation:
Given


Required
Show that 
The volume is calculated as:

Open the brackets



Collect Like Terms


Divide through by 4


Solving further:
Expand the expression

Factorize:


Split:


I'd be more than happy to help. Im a sophmore and Love math
Let x be the 1st odd number, and x+2 the second odd consecutive number:
(x)(x + 2) = 6[((x) + (x+2)] -1
x² + 2x = 6(2x + 2) - 1
x² + 2x = 12x +12 - 1
And x² - 10x - 11=0
Solve this quadratic expression:
x' = [+10 +√(10²- 4.(1)(-11)]/2 and x" = [+10 -√(10²- 4.(1)(-11)]/2
x' = [10 + √144]/2 and x" = [10 - √64]/2
x' = (10+12)/2 and x" = (10-12)/2
x = 11 and x = -1
We have 2 solutions that satisfy the problem:
1st for x = 11, the numbers at 11 and 13
2nd for x = - 1 , the numbers are -1 and +1
If you plug each one in the original equation :(x)(x + 2) = 6[((x) + (x+2)] -1
you will find that both generates an equlity