Answer:
7(tan50°)
Step-by-step explanation:
<em>so </em><em>first </em><em>you </em><em>need </em><em>to </em><em>find </em><em>which</em><em> </em><em>formula </em><em>will </em><em>be </em><em>using </em><em>to </em><em>do </em><em>this </em><em>you </em><em>need </em><em>to </em><em> </em><em>find </em><em>if </em><em>you </em><em>are </em><em>talking </em><em>about </em><em>the </em><em>hypotenuse</em><em>,</em><em> </em><em>opposite </em><em>or </em><em>adja</em><em>c</em><em>ent</em><em>.</em>
<em> </em><em>t</em><em>here </em><em>are </em><em>3</em><em> </em><em>formulas </em><em>if </em><em>you </em><em>need </em><em>then </em><em>tell </em><em>me?</em><em>?</em>
1. The formula for calculate the area of a rectangle, is:
A=LxW
A is the area of the rectangle
L is the length of the rectangle.
W is the widht of the rectangle
2. You have that:
-The<span> rectangular Corn Hole area has a width of 5 feet and a length of 10 feet, so:
L1=10 feet
W1=5 feet
- When</span> a uniform amount is added to each side (x), the area is increased to 84 feet². Then, you have a different length (L2) and a different width (W2):
3. The new length is:<span>
L2=L1+x+x
L2=L1+2x
L2=10+2x
4. The new width is:
W2=W1+x+x
W2=W1+2x
W2=5+2x
5. The new area is:
A2=84 feet</span>²<span>
6. Then, you have:
A=LxW
84</span>=(10+2x)(<span>5+2x)
7. When you apply the distributive property, you obtain a quadratic equation:
4x</span>²+30x-34=0
<span>
8. You can solve with by applyin the quadratic formula:
x=(-b±√(b^2-4ac))/2a
a=4
b=30
c=-34
9. Then, the answer is:
x=1 feet
</span><span>
</span>
Answer:
Step-by-step explanation:
the sum of angles of triangle=180 degrees
one angle=90 degrees
180-90=90 degrees is the measure of the other two angles
since the two angles are congruent or equal
90/2=45 degrees
the measure of the 2 angles =45 degrees each
(4x^2 -25) /( 2x+5)
Factorise the numerator
((2x)^2 - (5)^2 ) / ( 2x+5)
Applying the Difference of squares
= ((2x +5)(2x -5))/ (2x+5)
(2x+5) cancels in both numerator and denominator
That implies ,
= (2x-5) , with restriction 2x+5 not equals to 0
or x not equals to -5/2
So the first one is the correct answer
(2x+5) , restriction , x not equals to -5/2