Using the given functions, it is found that:
- Lower total cost at Jump-n-Play: 40, 64.
- Lower total cost at Bounce house: 28, 8, 30.
- Same total cost at both locations: 32.
<h3>What are the cost functions?</h3>
For n visits to Jump-n-play, the cost is:
J(n) = 189 + 3n.
For n visits to Bounce Word, the cost is:
B(n) = 125 + 5n.
Comparing them, we have that:




Hence:
- For less than 32 visits, the cost at Bounce World is lower.
- For more than 32 visits, the cost at Jump-n-play is lower.
Hence:
- Lower total cost at Jump-n-Play: 40, 64.
- Lower total cost at Bounce house: 28, 8, 30.
- Same total cost at both locations: 32.
More can be learned about functions at brainly.com/question/25537936
 
        
             
        
        
        
Answer:123
Step-by-step explanation:
 
        
             
        
        
        
By definition of covariance,
![\mathrm{Cov}(X,Y)=\mathbb E[(X-\mathbb E[X])(Y-\mathbb E[Y])]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5B%28X-%5Cmathbb%20E%5BX%5D%29%28Y-%5Cmathbb%20E%5BY%5D%29%5D)
![\mathrm{Cov}(X,Y)=\mathbb E[XY-\mathbb E[X]Y-X\mathbb E[Y]+\mathbb E[X]\mathbb E[Y]]=\mathbb E[XY]-\mathbb E[X]\mathbb E[Y]](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28X%2CY%29%3D%5Cmathbb%20E%5BXY-%5Cmathbb%20E%5BX%5DY-X%5Cmathbb%20E%5BY%5D%2B%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%5D%3D%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D)
We have
![\mathbb E[(aX-b)(cY-d)]=\mathbb E[acXY-adX-bcY+bd]](https://tex.z-dn.net/?f=%5Cmathbb%20E%5B%28aX-b%29%28cY-d%29%5D%3D%5Cmathbb%20E%5BacXY-adX-bcY%2Bbd%5D)
![=ac\mathbb E[XY]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%3Dac%5Cmathbb%20E%5BXY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
![\mathbb E[aX-b]=a\mathbb E[X]-b](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%3Da%5Cmathbb%20E%5BX%5D-b)
![\mathbb E[cY-d]=c\mathbb E[Y]-d](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BcY-d%5D%3Dc%5Cmathbb%20E%5BY%5D-d)
![\mathbb E[aX-b]\mathbb E[cY-d]=ac\mathbb E[X]\mathbb E[Y]-ad\mathbb E[X]-bc\mathbb E[Y]+bd](https://tex.z-dn.net/?f=%5Cmathbb%20E%5BaX-b%5D%5Cmathbb%20E%5BcY-d%5D%3Dac%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D-ad%5Cmathbb%20E%5BX%5D-bc%5Cmathbb%20E%5BY%5D%2Bbd)
Putting everything together, we find the covariance reduces to
![\mathrm{Cov}(aX-b,cY-d)=ac(\mathbb E[XY]-\mathbb E[X]\mathbb E[Y])=ac\mathrm{Cov}(X,Y)](https://tex.z-dn.net/?f=%5Cmathrm%7BCov%7D%28aX-b%2CcY-d%29%3Dac%28%5Cmathbb%20E%5BXY%5D-%5Cmathbb%20E%5BX%5D%5Cmathbb%20E%5BY%5D%29%3Dac%5Cmathrm%7BCov%7D%28X%2CY%29)
as desired.
 
        
             
        
        
        
Answer:
11 feet (Option C)
Step-by-step explanation:
Let the longer side be l and the shorter side be b. 
We know that,
→ Perimeter of rectangle = 2 ( longer side + shorter side )
Here,
- Perimeter of rectangle is 32 feet.
→ 32 = 2 (l + b)
→ 32 = 2l + 2(5)
→ 32 = 2l + 10
→ 32 - 10 = 2l
→ 22 = 2l
→  = l
 = l
→ 11 = l
→<u> 11 feet = longer side</u>
 <u>Length</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>longer</u><u> </u><u>side</u><u> </u><u>is</u><u> </u><u>1</u><u>1</u><u> </u><u>feet</u><u>.</u>
 <u>Length</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>longer</u><u> </u><u>side</u><u> </u><u>is</u><u> </u><u>1</u><u>1</u><u> </u><u>feet</u><u>.</u>
 
        
             
        
        
        
Answer: No
Explanation: The relation is not a function because there is more than one output (y) for a single input (x).