<u>Answer:</u> The outermost valence electron enters the p orbital.
<u>Explanation:</u>
Valence electrons are defined as the electrons which are present in outer most orbital of an atom.
Sulfur is the 16th element of the periodic table having 16 electrons.
Electronic configuration of sulfur atom is 
The number of valence electrons are 2 + 4 = 6
These 6 electrons enter s-orbital and p-orbital but the outermost valence electron will enter the p-orbital.
Hence, the outermost valence electron enters p orbital.
Answer:
stay the same.
Explanation: Period 3 consists of the full 1s, 2s, and 2p electron orbitals, plus the 3s and 3p valence orbitals, which are filled with a total of 8 more electrons as we move from left (Na) to the far right (Ar):
Na: 1s2 2s2 2p6 3s1
Ar: s2 2s2 2p6 3s2 3p6
As we move from left to right, and ignoring the already-filled 1s, 2s, and 2p orbitals, the period three starting and ending elements have the following:
Na: 3s1
Ar: 3s2, 3p6
All the new electrons electrons filled the third energy level (3s and 3p). So the energy level does not change, just the orbitals.
Answer:
Cl
Explanation:
chlorine (2,8,7) is a non metal with highest electronegativity. Hence, it is most likely to form a negative ion with charge −1.
I hope it helps you
The volume of the gas that occupy at STP is 165. 28 cm^3
calculation
by use of combined gas law that is P1V1/T1=P2V2/T2, where
P1=84.6 kpa
T1=23.5 +273=296.5 K
V1=215 cm^3
At STP T= 273 K and P= 101.325 Kpa
therefore p2 = 101.325 Kpa and T2 = 272 K V2=?
by making V2 the subject of the formula V2 =T2P1V1/P2T1
V2 = 273 K x 84.6 Kpa x 215 cm^3/ 101,.325 Kpa x296.5 K =165.28 cm^3
In order to form polymers, we need to chain molecules together. This involves making bonds between them.
Shifting H’s around doesn’t accomplish anything.
Forming more double bonds will have the opposite result, as it would make the molecules more stable and less likely to react with each other.
Adding oxygen to the molecule no longer makes it polybutene. That would likely result in the formation of some sort of ether, as hey would react to form a C-O-C Bond.
The only answer left is A. In order to form polyalkenes, we have to break a double bond so that it’s available to form more covalent bonds.
Hope this helps