Answer:
about three weeks
Explanation:
because after a full moon, which is about 21 days, it comes to a third quarter moon
Difference between Gas and Vapour:
Gas:
A thermodynamic state in which a substance exists only in one phase i.e. Gas phase. In above given examples N₂, He and CO₂ exists as gases at room temperature. These gases cannot form a solid or liquid phase along with gas phase as these states requires very low temperatures.
Vapours:
It is a thermodyanamic state in which a substance exists in more than one phase. In given options Sulfur can exist in vapor state. This is because sulfur exists in a cyclic or chain form due to catenation (self linkage property). Therefore, a lower members of S allotrops can form a vapours.
Answer:
They are defined as having a minimum orbital intersection distance with Earth of less than 0.05 astronomical units (19.5 lunar distances) and an absolute magnitude of 22 or brighter.
Explanation:
The chemical formula of a compound express the atoms by which the molecule is formed and the ratio of the atoms in which they are combined.
The space filling model of a compound describe the electron density in the compound of each atom.
The ball and stick arrangement of a compound describe the way in which the molecules are present in three dimensions.
The structural formula state the number of atoms present in the molecule, the type of element or atom present in the molecule and the way in which they are arranged closely which is the bond.
Thus only the structural formula only will cover all the options as stated.
First, consider the steps to heat the sample from 209 K to 367K.
1) Heating in liquid state from 209 K to 239.82 K
2) Vaporaizing at 239.82 K
3) Heating in gaseous state from 239.82 K to 367 K.
Second, calculate the amount of heat required for each step.
1) Liquid heating
Ammonia = NH3 => molar mass = 14.0 g/mol + 3*1g/mol = 17g/mol
=> number of moles = 12.62 g / 17 g/mol = 0.742 mol
Heat1 = #moles * heat capacity * ΔT
Heat1 = 0.742 mol * 80.8 J/mol*K * (239.82K - 209K) = 1,847.77 J
2) Vaporization
Heat2 = # moles * H vap
Heat2 = 0.742 mol * 23.33 kJ/mol = 17.31 kJ = 17310 J
3) Vapor heating
Heat3 = #moles * heat capacity * ΔT
Heat3 = 0.742 mol * 35.06 J / (mol*K) * (367K - 239.82K) = 3,308.53 J
Third, add up the heats for every steps:
Total heat = 1,847.77 J + 17,310 J + 3,308.53 J = 22,466.3 J
Fourth, divide the total heat by the heat rate:
Time = 22,466.3 J / (6000.0 J/min) = 3.7 min
Answer: 3.7 min