In an arithmetic sequence, the difference between consecutive terms is constant. In formulas, there exists a number
such that

In an geometric sequence, the ratio between consecutive terms is constant. In formulas, there exists a number
such that

So, there exists infinite sequences that are not arithmetic nor geometric. Simply choose a sequence where neither the difference nor the ratio between consecutive terms is constant.
For example, any sequence starting with

Won't be arithmetic nor geometric. It's not arithmetic (no matter how you continue it, indefinitely), because the difference between the first two numbers is 14, and between the second and the third is -18, and thus it's not constant. It's not geometric either, because the ratio between the first two numbers is 15, and between the second and the third is -1/5, and thus it's not constant.
Answer:
The answer is 7/36.
Step-by-step explanation:
First, you find out how many possible outcomes there are from rolling a pair of dice. On one cube, you can roll a 1,2,3,4,5, or 6; so there are 6 outcomes. Since there are two cubes, you multiply 6 by itself to get a total of 36 possible outcomes. Next, you find the probability of the sum of the numbers rolled being an even number; the possibilities are 2,4,6,8,10, or 12, which is 6/36. The probability of rolling a multiple of 5; the one possibility is just 5, since we already accounted for rolling a 10 as an even number. So that is 1/36. The word <u>or</u> says that we add the two probabilities, so the final answer is 6/36+1/36=7/36.
C and d are going to be the answers to your question. >-< :)
Answer: To find a residual you must take the predicted value and subtract it from the measured value.
Step-by-step explanation:
(1/4)^-2 - (5^0 x 2) x 1^-1 =
(4/1)^2 - (1 x 2) x 1 = 16-2 = 14
If you raise something to the power of -2, swap numerator and denominator and remove the minus.
So (1/4)^-2 = 4^2 = 16
Also 1^-1 is just 1, not -1.