Answer:
D. Yes, two hydrogen bonds could form between thymine and cytosine.
Explanation:
A hydrogen bond (often informally abbreviated H -bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative atom or group, particularly the second-row elements nitrogen (N), oxygen (O), or fluorine (F)—the hydrogen bond donor (Dn)—and another electronegative atom bearing a lone pair of electrons—the hydrogen bond acceptor (Ac).
The formation of stable hydrogen bonds depends on the distance between two strands, the size of the bases and geometry of each base. Stable pairings occur between guanine and cytosine and between adenine and thymine (or adenine and uracil in RNA).
One hydrogen bond could form between the C4 carbonyl group on thymine (a hydrogen bond acceptor) and the C4 amino group on cytosine (a hydrogen bond donor). Another hydrogen bond could form between N3 of thymine (a hydrogen bond donor) and the N3 of cytosine (a hydrogen bond acceptor). Note that the C2 carbonyl groups found on both bases are both hydrogen bond acceptors and therefore a hydrogen bond cannot be formed between them.
The answer should be C.
"Increased Exercise."
you can freeze dry it. You can put the food in an air tight bag.
Well one of them is that they imagine that many unfamiliar images may be “monsters” bc they’ve never seen such things before and another is that they are increasingly inventive in fantasy play
Answer:
The answer is at high risk.
Explanation:
Researchers have found that the biological relatives of adoptees with schizophrenia are at high risk than their adoptive relatives to develop schizophrenia.
Some adoption studies have demonstrated that genetic makeup of an individual contributes to schizophrenia. It also suggested that the disorder is most likely caused from genetic and environmental factors rather than just genetic makeup itself.