Answer:
Muliple choice A.
Step-by-step explanation:
Here, we have two sets that need to be subtracted from eachother. So, first we start off like we're reading a book. From top to bottom, from left to right. And we need to match up the numbers together to subtract. (i.e. the top left from both set A and B will be 5 and 1, so we subtract these. And we do that for all the numebrs.
<span>Maximum area = sqrt(3)/8
Let's first express the width of the triangle as a function of it's height.
If you draw an equilateral triangle, then a rectangle using one of the triangles edges as the base, you'll see that there's 4 regions created. They are the rectangle, a smaller equilateral triangle above the rectangle, and 2 right triangles with one leg being the height of the rectangle and the other 2 angles being 30 and 60 degrees. Let's call the short leg of that triangle b. And that makes the width of the rectangle equal to 1 minus twice b. So we have
w = 1 - 2b
b = h/sqrt(3)
So
w = 1 - 2*h/sqrt(3)
The area of the rectangle is
A = hw
A = h(1 - 2*h/sqrt(3))
A = h*1 - h*2*h/sqrt(3)
A = h - 2h^2/sqrt(3)
We now have a quadratic equation where A = -2/sqrt(3), b = 1, and c=0.
We can solve the problem by using a bit of calculus and calculating the first derivative, then solving for 0. But since this is a simple quadratic, we could also take advantage that a parabola is symmetrical and that the maximum value will be the midpoint between it's roots. So let's use the quadratic formula and solve it that way. The 2 roots are 0, and 1.5/sqrt(3).
The midpoint is
(0 + 1.5/sqrt(3))/2 = 1.5/sqrt(3) / 2 = 0.75/sqrt(3)
So the desired height is 0.75/sqrt(3).
Now let's calculate the width:
w = 1 - 2*h/sqrt(3)
w = 1 - 2* 0.75/sqrt(3) /sqrt(3)
w = 1 - 2* 0.75/3
w = 1 - 1.5/3
w = 1 - 0.5
w = 0.5
The area is
A = hw
A = 0.75/sqrt(3) * 0.5
A = 0.375/sqrt(3)
Now as I said earlier, we could use the first derivative. Let's do that as well and see what happens.
A = h - 2h^2/sqrt(3)
A' = 1h^0 - 4h/sqrt(3)
A' = 1 - 4h/sqrt(3)
Now solve for 0.
A' = 1 - 4h/sqrt(3)
0 = 1 - 4h/sqrt(3)
4h/sqrt(3) = 1
4h = sqrt(3)
h = sqrt(3)/4
w = 1 - 2*(sqrt(3)/4)/sqrt(3)
w = 1 - 2/4
w = 1 -1/2
w = 1/2
A = wh
A = 1/2 * sqrt(3)/4
A = sqrt(3)/8
And the other method got us 0.375/sqrt(3). Are they the same? Let's see.
0.375/sqrt(3)
Multiply top and bottom by sqrt(3)
0.375*sqrt(3)/3
Multiply top and bottom by 8
3*sqrt(3)/24
Divide top and bottom by 3
sqrt(3)/8
Yep, they're the same.
And since sqrt(3)/8 looks so much nicer than 0.375/sqrt(3), let's use that as the answer.</span>
see so,1200 kg of coal=1kg of aluminum
if 1 soda can needs 15g of aliminium so
1200/15=80kg coal will be needed for 1 can of soda.
Answer:
small cups=30
large cups=40
Step-by-step explanation:
let x be the number of small cups and y the number of large cups.
-Given that 10 more cups than small cups of lemonade were sold:
#Before the 10 more were sold, the number of x and y sold were equal>
The number of small cups sold was 30
#Since, the number of large cups was 10 more, y=x+10=30+10=40