Answer:

Step-by-step explanation:
Answer:
20°
Step-by-step explanation:
40°, 70° and 90° are the measures of the three angles of the quadrilateral.
Measure of fourth angle of the Quadrilateral
= 360° - (40° + 70° + 90°)
= 360° - 200°
= 160°
Measure of angle 1 will be equal to the measure of the linear pair angle of 160° as they are corresponding angles.
Thus,


Alternate method:
![m\angle 1 = 180\degree- [360\degree-(40\degree+70\degree+90\degree)]](https://tex.z-dn.net/?f=m%5Cangle%201%20%3D%20180%5Cdegree-%20%5B360%5Cdegree-%2840%5Cdegree%2B70%5Cdegree%2B90%5Cdegree%29%5D)
![\implies m\angle 1 = 180\degree- [360\degree-200\degree]](https://tex.z-dn.net/?f=%5Cimplies%20m%5Cangle%201%20%3D%20180%5Cdegree-%20%5B360%5Cdegree-200%5Cdegree%5D)


Bear in mind the Unit Circle is called so, because its radius is exactly 1, thus just 1 unit, the Unit Circle
anyway
Step-by-step explanation:
sides:91/12=42/26
angles:LMN=LBA and MNL=BAL
I think the answer is (4) because if you rotate AEC to the left (counterclockwise) and follow by the scale factor of 2 so, CE = 4x2 = 8 and CA = 3x2 = 6. Hope this help :))