1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ad-work [718]
2 years ago
11

1/6(j-1)+4=1/5(3j+1)

Mathematics
1 answer:
svp [43]2 years ago
5 0

Answer:8.385

Step-by-step explanation:

Step 1: multiply both sides by 30 (this sounds crazy, but that's 5 and 6's least common multiple) 1/6(j-1)+4=1/5(3j+1) -> 5(j-1)+120=6(3j+1)

Step 2: Distribute 5(j-1)+120=6(3j+1) -> 5j-5+120=18j+6

Step 3: Combine like terms 5j-5+120=18j+6 -> 5j+115=18j+6

Step 4: Isolate the variable 5j+115=18j+6 -> 109=13j

Step 5: Divide to further isolate 109/13=j= 8.385

You might be interested in
If an object is moving at a speed of 6 meters per second for a time of 5 seconds, how far did the object travel? A. 35 meters B.
Cerrena [4.2K]

Answer: D 30 meters

Step-by-step explanation:

5 multiplied by 6 is 30

3 0
3 years ago
15+ Points for Best Answers!!
Bogdan [553]
1) mesure of an arc= R.Ф, where R is the radius & Ф the angle <span>IN RADIAN

32</span>°===>8π/45 OR 0.5585, So mes of Arc CD = 6x0.5585 = 3.35 cm


2) DAC = 31° & CAD =27° , these 2 angles being adjacent I can write that

Angle(DAC +CAB=DCB) ==>Angle DCB =(31°+27°=58°)

To remember that any vertex of an angle on the circles, its sides intercept an arc which mesure is twice the angle,

Hence since mes Angle DCB=58°, that means the ARC intercepted, namely DB has a length of 2x 58 = 116°



6 0
4 years ago
The total surface area of a closed cylinder is
Degger [83]

The maximum volume of the cylinder is 27147.355 at the maximum point  r = \frac{50}{\sqrt{3} } .

<h3>How do you find the maximum volume of the cylinder?</h3>

The formula for the volume of the cylinder v = \pir^{2}h, To find the maximum volume of the cylinder we apply the condition of maxima  \frac{\mathrm{d} v}{\mathrm{d} r} = 0.

Let r cm be the radius and h cm be the height of the closed cylinder.

Then, Total surface area of the cylinder = 2\pi r(r+h)

                                                        5000 = 2\pi r^{2} +2\pi rh

                                                             h =   \frac{5000-2\pi r^{2} }{2\pi rh} .............(1)

Volume of the cylinder v = \pi r^{2} h

Substitute the value of h in the above equation

\Rightarrow                                       = \pi r^{2} × \left [ \frac{5000-2\pi  r^{2}}{2\pi r} \right ]

\Rightarrow                                      = \frac{r}{2} ×  (5000-2\pi r^{2} )

\Rightarrow                                    v = 2500r-\pi r^{3} ..............(2)

Now, for the maximum volume of the cylinder  \frac{\mathrm{d} v}{\mathrm{d} r} = 0

\Rightarrow                                                            \frac{\mathrm{d} (2500r-\pi r^{3})}{\mathrm{d} r} = 0

\Rightarrow                                                                      3\pi r^{2} = 2500

\Rightarrow                                                                          r^{2} = \frac{2500}{3\pi }

\Rightarrow                                                                          r = \frac{50}{\sqrt{3\pi } }

Volume is maximum for  r = \frac{50}{\sqrt{3\pi } }  

Then, v = 2500r-\pi r^{3}

\Rightarrow              =  2500 \frac{50}{\sqrt{3\pi } } -\pi (\frac{50}{\sqrt{3\pi } } )^{3}                              

\Rightarrow             = \frac{125000}{\sqrt{3\pi } } - \frac{125000}{3\sqrt{3\pi } }

\Rightarrow             = \frac{125000}{\sqrt{3\pi } }×\frac{2}{3}

\Rightarrow             = \frac{250000}{3\sqrt{3\pi } }                                                              

\Rightarrow          v = 27147.355

Hence, The maximum volume of the cylinder is 27147.355 at the maximum point  r = \frac{50}{\sqrt{3} } .                                                

To learn more about total surface area and volume of the cylinder from the given link

brainly.com/question/16095729

#SPJ4                                                                                   

3 0
2 years ago
The circumference of a circle is 56.52 meters. What is the radius of the circle?
NISA [10]
2*pi*r = 56.52 ........................................ r = 56.52/2pi ........................................... r = 56.52/6.28 ........................................ r = 9..............
8 0
3 years ago
Pleaseeee help on question 3 and 5 pleaseeeee wuick thank youuuuuuuuu
elena55 [62]

Answer:

3a, 13cm 5, 1:200

Step-by-step explanation:

In the question 3 you just have to divide all of those numbers with that 5000, maybe also make them cm so it makes more sense. So 650m = 65000cm:5000= 13cm

then for the question 5, make the km to cm, so 4.2km would be 420000cm. Then you have to divide that 420000cm with the 21 cm, so 420000:21= 200. Then the scale should be 1:200

I had difficulties with these as well. If you need extra help with the task 3 please pm me :)

7 0
4 years ago
Other questions:
  • Describe the axis of symmetry of the graph of the quadratic function represented by the equation y=ax^2+bx+c when b=0
    12·1 answer
  • Help me find x please
    6·1 answer
  • Simplify (10–2) 4. A) 10^-8 B)10^-6 C)-10^-6 D)-10^8
    10·2 answers
  • What angle would you need on a pie graph for a section that represented 25% of the
    5·1 answer
  • What is equivalent to 4.321 × 10−4 ?<br><br> What is equivalent to 4.321 × 10−4 ?
    5·1 answer
  • Sheila’s job has a base monthly salary of $1,100. for every sale she makes, she earns $30. if shelias goal is to earn $2,630 thi
    7·2 answers
  • The Capitalist Mutual Fund's portfolio is valued at $45 million. The fund has liabilities of $3 million, and the investment comp
    9·2 answers
  • Angles of elevation and depression
    15·1 answer
  • I need help I have one week to Finnish all of my school and imma die.<br> 8th BTW
    10·2 answers
  • What is this help please
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!