Answer:
I'm not sure if you have any options or what you really need here. but i can tell you that this sentence is not correct.
Explanation:
The word which should be changed is affect. The word affect can only be used as a verb to affect and not as a noun. It should be changed to effect here. It had a strong EFFECT on my life.
<em>A vindication of the rights of women</em> by Mary Wollstonecraft is a political philosophy. In the excerpt, the author implies that a woman's inquisitiveness will lead to trickery.
<h3>What is the theme of A Vindication of the rights?</h3>
<em>A vindication of the rights of women</em> is a dedication work to Charles. M. Talleyrand. It depicts the major denial and oppression faced by a woman in society and women's education.
The narrator suggests that if women are forced to only the domestic work then they will resort to clever and tricky ways like visiting fortune tellers, rivalries, and engaging in silly activities.
Therefore, option B. suggests that women can assort in tricky and clever ways.
Learn more about Wollstonecraft's argument here:
brainly.com/question/14846238
#SPJ1
The technique to improve internal validity is D) Addition of a control group.
<h3>What is
internal validity?</h3>
Internal validity serves as the study which bring about the establishment of a trustworthy cause-and-effect relationship that can be found in treatment and an outcome.
it should be noted that Internal validity also helps to eliminate alternative explanations , hence, The technique to improve internal validity is D) Addition of a control group.
Learn more about internal validity on:
brainly.com/question/968894
#SPJ1
COMPLETE QUESTOIN:
Which of the following is a technique to improve internal validity ____________?
A) Experimenter expectancy
B) Participant bias
C) Use of a confederate
D) Addition of a control group
The probability that students who were randomly selected studied for the test, if they pass it with a B or higher grade is: D. 0.80.
<h3>How to calculate the probability?</h3>
In this exercise, you're required to determine the probability that students who were randomly selected studied for the test, if they pass it with a B or higher grade. Thus, we would apply Bayes's theorem.
- Let S represent studied for.
- Let B represent a score of B or higher grade
Therefore, we need to find P(S|B):

S|B = 0.80.
Read more on probability here: brainly.com/question/25870256
#SPJ1
<u>Complete Question:</u>
At the beginning of the semester, a professor tells students that if they study for the tests, then there is a 55% chance they will get a B or higher on the tests. If they do not study, there is a 20% chance that they will get a B or higher on the tests. The professor knows from prior surveys that 60% of students study for the tests. The probabilities are displayed in the tree diagram.
Please mark as brainliest hope this helps