Answer:
- 37/100
Step-by-step explanation:
Since it's not a whole number it is over 100.
I hope this helped and if it did I would appreciate it if you marked me Brainliest. Thank you and have a nice day!
Answer:
Correct option is
B
1.x+0.y=7
x=7 can be written as, 1.x+0.y=7 as the coefficient of x is 1 and that of y is 0. Step-by-step explanation:
I'm reading this as
![\displaystyle\int_C2xe^{-y}\,\mathrm dx+(2y-x^2e^{-y})\,\mathrm dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint_C2xe%5E%7B-y%7D%5C%2C%5Cmathrm%20dx%2B%282y-x%5E2e%5E%7B-y%7D%29%5C%2C%5Cmathrm%20dy)
with
![\nabla f=(2xe^{-y},2y-x^2e^{-y})](https://tex.z-dn.net/?f=%5Cnabla%20f%3D%282xe%5E%7B-y%7D%2C2y-x%5E2e%5E%7B-y%7D%29)
.
The value of the integral will be independent of the path if we can find a function
![f(x,y)](https://tex.z-dn.net/?f=f%28x%2Cy%29)
that satisfies the gradient equation above.
You have
![\begin{cases}\dfrac{\partial f}{\partial x}=2xe^{-y}\\\\\dfrac{\partial f}{\partial y}=2y-x^2e^{-y}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%3D2xe%5E%7B-y%7D%5C%5C%5C%5C%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D2y-x%5E2e%5E%7B-y%7D%5Cend%7Bcases%7D)
Integrate
![\dfrac{\partial f}{\partial x}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D)
with respect to
![x](https://tex.z-dn.net/?f=x)
. You get
![\displaystyle\int\dfrac{\partial f}{\partial x}\,\mathrm dx=\int2xe^{-y}\,\mathrm dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%5C%2C%5Cmathrm%20dx%3D%5Cint2xe%5E%7B-y%7D%5C%2C%5Cmathrm%20dx)
![f=x^2e^{-y}+g(y)](https://tex.z-dn.net/?f=f%3Dx%5E2e%5E%7B-y%7D%2Bg%28y%29)
Differentiate with respect to
![y](https://tex.z-dn.net/?f=y)
. You get
![\dfrac{\partial f}{\partial y}=\dfrac{\partial}{\partial y}[x^2e^{-y}+g(y)]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5Bx%5E2e%5E%7B-y%7D%2Bg%28y%29%5D)
![2y-x^2e^{-y}=-x^2e^{-y}+g'(y)](https://tex.z-dn.net/?f=2y-x%5E2e%5E%7B-y%7D%3D-x%5E2e%5E%7B-y%7D%2Bg%27%28y%29)
![2y=g'(y)](https://tex.z-dn.net/?f=2y%3Dg%27%28y%29)
Integrate both sides with respect to
![y](https://tex.z-dn.net/?f=y)
to arrive at
![\displaystyle\int2y\,\mathrm dy=\int g'(y)\,\mathrm dy](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint2y%5C%2C%5Cmathrm%20dy%3D%5Cint%20g%27%28y%29%5C%2C%5Cmathrm%20dy)
![y^2=g(y)+C](https://tex.z-dn.net/?f=y%5E2%3Dg%28y%29%2BC)
![g(y)=y^2+C](https://tex.z-dn.net/?f=g%28y%29%3Dy%5E2%2BC)
So you have
![f(x,y)=x^2e^{-y}+y^2+C](https://tex.z-dn.net/?f=f%28x%2Cy%29%3Dx%5E2e%5E%7B-y%7D%2By%5E2%2BC)
The gradient is continuous for all
![x,y](https://tex.z-dn.net/?f=x%2Cy)
, so the fundamental theorem of calculus applies, and so the value of the integral, regardless of the path taken, is
Answer:
7
Step-by-step explanation:
By Basic proportionality theorem:
![\frac{10}{8} = \frac{3x - 6}{12} \\ \\ \frac{10 \times 12}{8} = 3x - 6 \\ \\ \frac{120}{8} = 3x - 6 \\ \\ 15 = 3x - 6 \\ 15 + 6 = 3x \\ 21 = 3x \\ \frac{21}{3} = x \\ 7 = x \\ \\ \huge \red { \boxed{x = 7}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B10%7D%7B8%7D%20%20%3D%20%20%5Cfrac%7B3x%20-%206%7D%7B12%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7B10%20%5Ctimes%2012%7D%7B8%7D%20%20%3D%203x%20-%206%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7B120%7D%7B8%7D%20%20%3D%203x%20-%206%20%5C%5C%20%20%5C%5C%2015%20%3D%203x%20-%206%20%5C%5C%2015%20%2B%206%20%3D%203x%20%5C%5C%2021%20%3D%203x%20%5C%5C%20%20%5Cfrac%7B21%7D%7B3%7D%20%20%3D%20x%20%5C%5C%207%20%3D%20x%20%5C%5C%20%20%5C%5C%20%20%5Chuge%20%5Cred%20%7B%20%5Cboxed%7Bx%20%3D%207%7D%7D)
34% . <span>Since going from 75% to 82% is simply the right portion of that middle, the answer is half of 68%, or 34%.</span>