Answer:
No extraneous solution
Step-by-step explanation:
We have the logarithmic equation given by,
![\log_{2}[\log_{2}(\sqrt{4x})]=1](https://tex.z-dn.net/?f=%5Clog_%7B2%7D%5B%5Clog_%7B2%7D%28%5Csqrt%7B4x%7D%29%5D%3D1)
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
i.e. 
So, the solution of the given equation is x=4.
Now, as we domain of square root function is x > 0 and also, the domain of logarithmic function is
.
Therefore, the domain of the given function is x > 0.
We know that the extraneous solution is the solution which does not belong to the domain.
But as x=4 belongs to the domain x > 0.
Thus, x = 4 is not an extraneous solution.
Hence, this equation does not have any extraneous solution.
1.875 cups of flour ... add snap naomi_ful
Answer:
24.52
Step-by-step explanation:
Answer:
5y + 4 and 7y + 4 - 2y
Step-by-step explanation:
Look at the second choice:-
5y + 4 and 7y + 4 - 2y
Simplifying the second expression:-
7y + 4 - 2y
= 5y + 4
So both expressions are equivalent . Therefore if you plug in 2 or 5 the results will be the same.
Answer:
(6.3*10³) ÷ (1.8*10⁵)
6.3*10³ = 0.063*10⁵
then:
(6,3*10³) ÷ (1.8*10⁵) = (0.063*10⁵) ÷ (1.8*10⁵)
= 0.063/1.8
= 0.035
0.035 = 3.5 *10⁻² = 35*10⁻³