When a substance is under less pressure, or is under higher heat, it is gaining energy still. The particles vibrate faster, and get slightly more spaced out. If you take a metal ball and ring that fits perfectly around the ball, then heat the ball up with a flame, you will notice that the ball doesn't fit through the ring. The ball is still solid, but because it had more heat, it had more energy.
Answer:
41.54 grams of oxygen are required to burn 13.5 g of acetylene
Explanation:
The balanced reaction is:
2 C₂H₂ + 5 O₂ → 4 CO₂ + 2 H₂O
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- C₂H₂: 2 moles
- O₂: 5 moles
- CO₂: 4 moles
- H₂O: 2 moles
Being the molar mass of the compounds:
- C₂H₂: 26 g/mole
- O₂: 32 g/mole
- CO₂: 44 g/mole
- H₂O: 18 g/mole
By reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- C₂H₂: 2 moles* 26 g/mole= 52 grams
- O₂: 5 moles* 32 g/mole= 160 grams
- CO₂: 4 moles* 44 g/mole= 176 grams
- H₂O: 2 moles* 18 g/mole= 36 grams
You can apply the following rule of three: if by stoichiometry 52 grams of acetylene react with 160 grams of oxygen, 13.5 grams of acetylene react with how much mass of oxygen?

mass of oxygen= 41.54 grams
<u><em>41.54 grams of oxygen are required to burn 13.5 g of acetylene</em></u>
<u><em></em></u>
Answer:
The volume is
<h2>180 mL</h2>
Explanation:
In order to solve for the volume we use the formula for Boyle's law which is
<h3>

</h3>
where
P1 is the initial pressure
V1 is the initial volume
P2 is the final pressure
V2 is the final volume
Since we are finding the final volume we are finding V2
Making V2 the subject we have
<h3>

</h3>
From the question
P1 = 300 mmHg
V1 = 300 mL
P2 = 500 mmHg
Substitute the values into the above formula and solve for the final volume obtained
That's
<h3>

</h3>
We have the final answer as
<h3>180 mL</h3>
Hope this helps you
Answer:
both are solids, both are somewhat pliable
Answer:
1.Very good electrical conductivity :<u> Metals</u> (Decreacing order of conductivity)
- <em>Silver > Copper > Gold > aluminium</em>
2. Amphoteric <u>: Metal elements</u>
- <em>Beryllium , Aluminium , Zinc </em>,
3.Gaseous at room temperature: mostly <u>Nobel gases elements</u> and some non - metal elements.
- <em>Helium ,neon , argon , krypton , fluorine , Oxygen , nitrogen</em>
4.Solid at room temperature:<u> Mostly Metals</u> (few non-metals, metalloid elements)
- <em>Metals (Sodium , potassium , calcium , gold are solid)</em>
<em>Non- metals(Carbon ,Boron )</em>
<em>Metalloids(antimony)</em>
<em>5.</em> Brittle <em>: </em><u>non - metals </u>(can't be rolled into wires)
<em>Hydrogen , carbon , sulfur , phosphorus</em><u> </u>
Explanation: