Answer:
Shorter revolution times, Made of rock, No rings
Explanation:
want more facts? Here u go!
The four planets closest to the Sun—Mercury, Venus, Earth, and Mars—are the inner planets or terrestrial planets (Figure below). They are similar to Earth. All are solid, dense, and rocky. None of the inner planets has rings. Compared to the outer planets, the inner planets are small. They have shorter orbits around the Sun and they spin more slowly. Venus spins backward and spins the slowest of all the planets.
All of the inner planets were geologically active at one time. They are all made of cooled igneous rock with inner iron cores. Earth has one big, round moon, while Mars has two very small, irregular moons. Mercury and Venus do not have moons.
Answer:
the answer is lungs
Explanation:
All of the animals from frogs and up have and use lungs.
Answer:
1000 gram
Explanation:
because mass is constant everywhere
<em>An example of a</em><em>n</em><em> </em><em><u>exothermic</u></em><em> </em><em>reaction is when metals react with oxygen to form metal</em><em> </em><em><u>Oxides</u></em>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em>helped you- have a good day bro cya)
Answer:
4.26 %
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the percent ionization of nitrous acid in a solution that is 0.249 M in nitrous acid. The acid dissociation constant of nitrous acid is 4.50 × 10
⁻⁴.</em>
<em />
Step 1: Given data
Initial concentration of the acid (Ca): 0.249 M
Acid dissociation constant (Ka): 4.50 × 10
⁻⁴
Step 2: Write the ionization reaction for nitrous acid
HNO₂(aq) ⇒ H⁺(aq) + NO₂⁻(aq)
Step 3: Calculate the concentration of nitrite in the equilibrium ([A⁻])
We will use the following expression.
![[A^{-} ] = \sqrt{Ca \times Ka } = \sqrt{0.249 \times 4.50 \times 10^{-4} } = 0.0106 M](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%20%5D%20%3D%20%5Csqrt%7BCa%20%5Ctimes%20Ka%20%7D%20%3D%20%5Csqrt%7B0.249%20%5Ctimes%204.50%20%5Ctimes%2010%5E%7B-4%7D%20%20%7D%20%3D%200.0106%20M)
Step 4: Calculate the percent ionization of nitrous acid
We will use the following expression.
![\alpha = \frac{[A^{-} ]}{[HA]} \times 100\% = \frac{0.0106M}{0.249} \times 100\% = 4.26\%](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B%5BA%5E%7B-%7D%20%5D%7D%7B%5BHA%5D%7D%20%5Ctimes%20100%5C%25%20%3D%20%5Cfrac%7B0.0106M%7D%7B0.249%7D%20%5Ctimes%20100%5C%25%20%3D%204.26%5C%25)