Answer:
protons..................
Answer:
This question is incomplete as it lacks options. However, it can be answered based on general knowledge of the DNA structure.
Hydrogen bonds in a DNA are located between the nucleotides that holds the double stranded DNA molecules.
Explanation:
Deoxyribonucleic acid (DNA) is the genetic material in living cells. The DNA molecule is made up of nucleotides monomers. However, since the DNA molecule is double-stranded, the nucleotides are of two chains composed of four nucleotide subunits viz: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C).
The two chains of nucleotides in a DNA molecule are called strands. Each strand is bonded to one another by the nucleotides using complementary base pairing i.e. A-T, G-C. The bonds between the nucleotidew of each strand is called HYDROGEN BOND.
Hence, HYDROGEN BONDS in a DNA molecule is located in between two nucleotides of each strand. That is, hydrogen bond holds Adenine to Thymine and Guanine to Cytosine.
Human monoclonal antibody (mAbs) are emerging in the field of cancer therapy and have become an increasing proportion of new drugs that are recently approved. Although there are some methods to obtain antigen-specific mAbs from human B cells, it is generally impossible to directly immunize human beings with antigens of interest. For example, for infectious agents, those approaches are largely restricted. To solve these obstacles, two main approaches have been developed; either by humanizing antigen-specific antibodies from small experimental animals (which is laborious due to the great genetic differences from humans) or rely on the in vitro selection of antigen-specific binders from human antibody repertoires. However, the human mAbs developed by these methods are usually with low affinity.
We are now coming up with a much better idea that is humanizing non-human primates mAbs instead of murine mAbs. Due to the close genetic relationship with humans, immunized NHPs have more potential to be isolated with high affinity antibody to human target than other experimental species, such as mouse, rat and rabbit. In addition, with appropriate method, NHP antibodies are much<span> easier to be humanized</span> without any loss of affinity compared to widely used murine antibodies.
Resource: http://www.creative-biolabs.com/High-Affi-TM-Human-Antibody-Discovery.html