You would assume that in this figure, the number of colored sections with which are not colored with respect to a " touching " colored section, would be half of the total colored sections. However that is not the case, the sections are not alternating as they still meet at a common point. After all, it notes no two touching sections, not adjacent sections. Their is no equation to calculate this requirement with respect to the total number of sections.
Let's say that we take one triangle as the starting. This triangle will be the start of a chain of other triangles that have no two touching sections, specifically 7 triangles. If a square were to be this starting shape, there are 5 shapes that have no touching sections, 3 being a square, the other two triangles. This is presumably a lower value as a square occupies two times as much space, but it also depends on the positioning. Therefore, the least number of colored sections you can color in the sections meeting the given requirement, is 5 sections for this first figure.
Respectively the solution for this second figure is 5 sections as well.
FIRST. find the factors:
X=-5 --> (X + 5) = 0
x = 1--> (X - 1) = 0
x =3 --> (x - 3) = 0
3
NEXT, multiply all the factors:
(x + 5) (x - 1) (x - 3) = 0
-> X3 + x2 - 17x +15 = 0
-> f(x) = x3 + x2 - 17x +15 or
y=x3 + x2
17x + 15
Eres una pinche pendejha huevona
Hija de tu re Phuta bomba madreh, tienes una cara de vaca y puedes venir a mamrmeh la vergha
Answers:
_____________________________________________________
Part A) " (3x + 4) " units .
_____________________________________________________
Part B) "The dimensions of the rectangle are:
" (4x + 5y) " units ; <u>AND</u>: " (4x − 5y)" units."
_____________________________________________________
Explanation for Part A):
_____________________________________________________
Since each side length of a square is the same;
Area = Length * width = L * w ; L = w = s = s ;
in which: " s = side length" ;
So, the Area of a square, "A" = L * w = s * s = s² ;
{<u>Note</u>: A "square" is a rectangle with 4 (four) equal sides.}.
→ Each side length, "s", of a square is equal.
Given: s² = "(9x² + 24x + 16)" square units ;
Find "s" by factoring: "(9x² + 24x + 16)" completely:
→ " 9x² + 24x + 16 ";
Factor by "breaking into groups" :
"(9x² + 24x + 16)" =
→ "(9x² + 12x) (12x + 16)" ;
_______________________________________________________
Given: " (9x² + 24x + 16) " ;
_______________________________________________________
Let us start with the term:
_______________________________________________________
" (9x² + 12x) " ;
→ Factor out a "3x" ; → as follows:
_______________________________________
→ " 3x (3x + 4) " ;
Then, take the term:
_______________________________________
→ " (12x + 16) " ;
And factor out a "4" ; → as follows:
_______________________________________
→ " 4 (3x + 4) "
_______________________________________
We have:
" 9x² + 24x + 16 " ;
= " 3x (3x + 4) + 4(3x + 4) " ;
_______________________________________
Now, notice the term: "(3x + 4)" ;
We can "factor out" this term:
3x (3x + 4) + 4(3x + 4) =
→ " (3x + 4) (3x + 4) " . → which is the fully factored form of:
" 9x² + 24x + 16 " ;
____________________________________________________
→ Or; write: " (3x + 4) (3x + 4)" ; as: " (3x + 4)² " .
____________________________________________________
→ So, "s² = 9x² + 24x + 16 " ;
Rewrite as: " s² = (3x + 4)² " .
→ Solve for the "positive value of "s" ;
→ {since the "side length of a square" cannot be a "negative" value.}.
____________________________________________________
→ Take the "positive square root of EACH SIDE of the equation;
to isolate "s" on one side of the equation; & to solve for "s" ;
→ ⁺√(s²) = ⁺√[(3x + 4)²] '
To get:
→ s = " (3x + 4)" units .
_______________________________________________________
Part A): The answer is: "(3x + 4)" units.
____________________________________________________
Explanation for Part B):
_________________________________________________________<span>
The area, "A" of a rectangle is:
A = L * w ;
in which "A" is the "area" of the rectangle;
"L" is the "length" of the rectangle;
"w" is the "width" of the rectangle;
_______________________________________________________
Given: " A = </span>(16x² − 25y²) square units" ;
→ We are asked to find the dimensions, "L" & "w" ;
→ by factoring the given "area" expression completely:
____________________________________________________
→ Factor: " (16x² − 25y²) square units " completely '
Note that: "16" and: "25" are both "perfect squares" ;
We can rewrite: " (16x² − 25y²) " ; as:
= " (4²x²) − (5²y²) " ; and further rewrite the expression:
________________________________________________________
Note:
________________________________________________________
" (16x²) " ; can be written as: "(4x)² " ;
↔ " (4x)² = "(4²)(x²)" = 16x² "
Note: The following property of exponents:
→ (xy)ⁿ = xⁿ yⁿ ; → As such: " 16x² = (4²x²) = (4x)² " .
_______________________________________________________
Note:
_______________________________________________________
→ " (25x²) " ; can be written as: " (5x)² " ;
↔ "( 5x)² = "(5²)(x²)" = 25x² " ;
Note: The following property of exponents:
→ (xy)ⁿ = xⁿ yⁿ ; → As such: " 25x² = (5²x²) = (5x)² " .
______________________________________________________
→ So, we can rewrite: " (16x² − 25y²) " ;
as: " (4x)² − (5y)² " ;
→ {Note: We substitute: "(4x)² " for "(16x²)" ; & "(5y)² " for "(25y²)" .} . ;
_______________________________________________________
→ We have: " (4x)² − (5y)² " ;
→ Note that we are asked to "factor completely" ;
→ Note that: " x² − y² = (x + y) (x − y) " ;
→ {This property is known as the "<u>difference of squares</u>".}.
→ As such: " (4x)² − (5y)² " = " (4x + 5y) (4x − 5y) " .
_______________________________________________________
Part B): The answer is: "The dimensions of the rectangle are:
" (4x + 5y) " units ; AND: " (4x − 5y)" units."
_______________________________________________________