1a) 8 / (1/2) = 16 * 3 = 48
1b) 3sqrt(49) = 3 * 7 = 21
1c) (5+2)(-8) / (-2)^3 -3
(7*-8) / (-8 -3)
-56/-11
56/11
Answer:
<em>1</em><em> </em><em>second</em><em> </em>
Step-by-step explanation:
<em>16t</em><em>^</em><em>2</em><em>+</em><em>64t</em><em>=</em><em>80</em>
<em>16t</em><em>^</em><em>2</em><em>+</em><em>64t-80</em><em>=</em><em>0</em>
<em>64</em><em>^</em><em>2-4</em><em>(</em><em>16</em><em>)</em><em>(</em><em>-80</em><em>)</em>
<em>9216</em>
<em>-64-96</em>
<em>______</em><em> </em><em>=</em><em> </em><em>-5</em>
<em> </em><em> </em><em> </em><em>32</em>
<em>-64</em><em>+</em><em>96</em>
<em>_______</em><em> </em><em>=</em><em> </em><em>1</em><em> </em><em>sec</em>
<em> </em><em> </em><em> </em><em> </em><em>32</em>
Given
Brian's house: (-7, 9)
Sue's house: (-7, -2)
Find
The number of units between Brian's house and Sue's house.
Solution
Both Brian and Sue live on the "street" x=-7, so the distance between their houses is the distance between -2 on that street and +9 on that street. We always consider distance to be positive, so it doesn't matter whether we start at Brian's house and go -11 units to Sue's house, or start at Sue's house and go +11 units to Brian's house. Either way, we travel 11 units.
_____
"Displacement" is another matter. That has a sign associated with it and there is always a reference direction that is positive. Movement in the opposite direction results in a negative displacement. "Distance" is always positive.
A. sqrt 36
bc it becomes 6