The density of the block is 1.25 cm³
The correct answer to the question is Option B. 1.25 cm³
To solve this question, we'll begin by calculating the volume of the block. This can be obtained as follow:
Length = 7 cm
Height = 4 cm
Width = 3 cm
<h3>Volume =? </h3>
Volume = Length × Width × Height
Volume = 7 × 3 × 4
<h3>Volume = 84 cm³</h3>
Thus, the volume of the block is 84 cm³
Finally, we shall determine the density of the block. This can be obtained as follow:
Density is defined as mass per unit volume i.e

Mass of block = 105 g
Volume of block = 84 cm³
<h3>Density of block =? </h3>

<h3>Density of block = 1.25 cm³</h3>
Therefore, the density of the block is 1.25 cm³.
Hence, Option B. 1.25 cm³ gives the correct answer to the question.
Learn more: brainly.com/question/2040396?referrer=searchResults
I think it would be that they have long wavelengths
Answer:
Answer:
f) The puck conserves its original momentum but loses some, but not all, of its mechanical energy.
Explanation:
It is a case of perfectly inelastic collision . So momentum will be conserved because no external force acts on them during the collision . But there will be loss of energy ( kinetic energy ) . It will be in the form of sound or heat that is produced during collision. They will still have some kinetic energy even after the collision.
Explanation:
Answer:
600Joules
Explanation:
The energy stored by this battery is calculated using the energy formula;
E = Q× v
Where E is energy
Q is the charge
v is voltage
Hence E = 50 × 12 = 600Joules
Note Q = 12 ampere minute
... the angular tilt of the Earth's position on its axis relative to the sun