Answer:
7200N
Explanation:
Centripetal force is directly proportional to the product of the mass and the square of the velocity and inversely proportional to the radius given.
The coefficient of kinetic friction (μ) between the block and the table is 0.4.
<h3>
What is kinetic friction?</h3>
This sis the frictional force between an object in motion with the surface in contact.
μN = ff
where;
- N is normal reaction due to weight of the block
- ff is frictional force
- μ is coefficient of friction
μ = ff/N
μ = 8/20
μ = 0.4
Thus, the coefficient of kinetic friction (μ) between the block and the table is 0.4.
Learn more about coefficient of friction here: brainly.com/question/20241845
#SPJ1
You could attach the pulley to a secure object on the top of the ramp, and crank the pulley to bring the wagon up said ramp into a loading bay perhaps, or a track.
Hope I helped.
Well they could go down a hill to gain more kinetic energy.
The mechanical energy of the girl will be conserved because the system is isolated and the initial potential energy will be equal to final kinetic energy.
<h3>
What is the law of conservation of energy?</h3>
The law of conservation of energy states that energy can neither be created nor destroyed but can be transformed from one form to another.
The change in the potential energy of the launched from a height into the pool without friction from the given height h is calculated by applying the following kinematic equation.
ΔP.E = ΔK.E
where;
- ΔP.E is change in potential energy of the child
- ΔK.E is change in the kinetic energy of the child
mghf - mghi = ¹/₂mv² - ¹/₂mu²
where;
- m is the mass of the girl
- g is acceleration due to gravity
- hi is the initial height of the girl
- hf is the final height when she is launched into the pool
- u is the initial velocity
- v is the final velocity of the girl
Thus, for every closed or isolated system such as this case, mechanical energy is always conserved because the initial potential energy of the girl will be converted into her final kinetic energy.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
#SPJ1