I think it is submit
Hope this helps
Answer:
(4,2)
Step-by-step explanation:
Solving the system of equations means to find the dot where both the lines intersect. We know by the graph that the point where the both intersect is (4,2).
Please mark me as brainliest and I hope you do well on your assignment!
━━━━━━━━━━━━━━━ ♡ ━━━━━━━━━━━━━━━
So there are five candy bars.
Herself and two sisters equals 3 people in total.
This is a graph of 5 candy bars, each line being 1/2.
━ ━
━ ━
━ ━
━ ━
━ ━
If she ate half of one... the graph would become this.
━ ━
━ ━
━ ━
━ ━
━
Now there are 9 halves. You need to split the 9 halves for 3 people. 9 divided by 3 is 3.
Each person gets 3 halves, or 1 and 1 half.
Mai: ━ ━ ━
Sister 1: ━ ━ ━
Sister 2: ━ ━ ━
Altogether that is 9 halves, AKA the number of halves Mai had after she ate 1/2.
The amount Mai ate in the first place: ━
9 halves plus 1 half, equals 10 halves. Each whole has 2 halves. 10 divided by 2 is 5, AKA the number of candy bars she had in the first place.
━━━━━━━━━━━━━━━ ♡ ━━━━━━━━━━━━━━━
Answer:
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399
Step-by-step explanation:
There is a random binomial variable
that represents the number of units come off the line within product specifications in a review of
Bernoulli-type trials with probability of success
. Therefore, the model is
. So:
![P (X < 9) = 1 - P (X \geq 9) = 1 - [{15 \choose 9} (0.91)^{9}(0.09)^{6}+...+{ 15 \choose 15}(0.91)^{15}(0.09)^{0}] = 0.0002](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%209%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%209%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%209%7D%20%280.91%29%5E%7B9%7D%280.09%29%5E%7B6%7D%2B...%2B%7B%2015%20%5Cchoose%2015%7D%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0002%20)
![P (X < 10) = 1 - P (X \geq 10) = 1 - [{15 \choose 10}(0.91)^{10}(0.09)^{5}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0013](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2010%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2010%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2010%7D%280.91%29%5E%7B10%7D%280.09%29%5E%7B5%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0013%20)
![P (X < 11) = 1 - P (X \geq 11) = 1 - [{15 \choose 11}(0.91)^{11}(0.09)^{4}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0082](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2011%29%20%3D%201%20-%20P%20%28X%20%5Cgeq%2011%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2011%7D%280.91%29%5E%7B11%7D%280.09%29%5E%7B4%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0082)
![P (X < 12) = 1- P (X \geq 12) = 1 - [{15 \choose 12}(0.91)^{12}(0.09)^{3}+...+{15 \choose 15} (0.91)^{15}(0.09)^{0}] = 0.0399](https://tex.z-dn.net/?f=%20P%20%28X%20%3C%2012%29%20%3D%201-%20P%20%28X%20%5Cgeq%2012%29%20%3D%201%20-%20%5B%7B15%20%5Cchoose%2012%7D%280.91%29%5E%7B12%7D%280.09%29%5E%7B3%7D%2B...%2B%7B15%20%5Cchoose%2015%7D%20%280.91%29%5E%7B15%7D%280.09%29%5E%7B0%7D%5D%20%3D%200.0399%20)
Probability of stopping the machine when
is 0.0002
Probability of stopping the machine when
is 0.0013
Probability of stopping the machine when
is 0.0082
Probability of stopping the machine when
is 0.0399