Answer:
![\begin{aligned}ab(a+b) & = (ab)a+(ab)b & & \textsf{Distributive Property of Addition} \\& = a(ab)+(ab)b & & \textsf{Commutative Property of Multiplication} \\& = (a \cdot a)b + a(b \cdot b) & & \textsf{Associative Property of Multiplication}\\& = a^2b+ab^2 & & \textsf{Property of Exponents}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dab%28a%2Bb%29%20%26%20%3D%20%28ab%29a%2B%28ab%29b%20%26%20%26%20%5Ctextsf%7BDistributive%20Property%20of%20Addition%7D%20%5C%5C%26%20%3D%20a%28ab%29%2B%28ab%29b%20%26%20%26%20%5Ctextsf%7BCommutative%20Property%20of%20Multiplication%7D%20%5C%5C%26%20%3D%20%28a%20%5Ccdot%20a%29b%20%2B%20a%28b%20%5Ccdot%20b%29%20%26%20%26%20%5Ctextsf%7BAssociative%20Property%20of%20Multiplication%7D%5C%5C%26%20%3D%20a%5E2b%2Bab%5E2%20%26%20%26%20%5Ctextsf%7BProperty%20of%20Exponents%7D%5Cend%7Baligned%7D)
Step-by-step explanation:
<u>Distributive Property of Addition</u>
Multiplying a number by a group of numbers added together is the same as multiplying each number separately.
Addition: a(b + c) = ab + ac
Subtraction: a(b - c) = ab – ac
<u>Commutative Property</u>
Changing the order or position of two numbers does not change the end result.
Applies to <u>addition</u> and <u>multiplication</u> only.
Addition: a + b = b + a
Multiplication: a × b = b × a
<u>Associative Property</u>
Grouping of numbers by parentheses in a different way does not affect their sum or product.
Applies to <u>addition</u> and <u>multiplication</u> only.
Addition: (a + b) + c = a + (b + c) = (a + c) + b
Multiplication: (a × b) × c = a × (b × c) = (a × c) × b
<u>Property of Exponents</u>
The <u>exponent</u> of a number shows how many times it should be <u>multiplied by itself</u>.
a × a × a = a³
b × b × b × b = b⁴
![\begin{aligned}ab(a+b) & = (ab)a+(ab)b & & \textsf{Distributive Property of Addition} \\& = a(ab)+(ab)b & & \textsf{Commutative Property of Multiplication} \\& = (a \cdot a)b + a(b \cdot b) & & \textsf{Associative Property of Multiplication}\\& = a^2b+ab^2 & & \textsf{Property of Exponents}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dab%28a%2Bb%29%20%26%20%3D%20%28ab%29a%2B%28ab%29b%20%26%20%26%20%5Ctextsf%7BDistributive%20Property%20of%20Addition%7D%20%5C%5C%26%20%3D%20a%28ab%29%2B%28ab%29b%20%26%20%26%20%5Ctextsf%7BCommutative%20Property%20of%20Multiplication%7D%20%5C%5C%26%20%3D%20%28a%20%5Ccdot%20a%29b%20%2B%20a%28b%20%5Ccdot%20b%29%20%26%20%26%20%5Ctextsf%7BAssociative%20Property%20of%20Multiplication%7D%5C%5C%26%20%3D%20a%5E2b%2Bab%5E2%20%26%20%26%20%5Ctextsf%7BProperty%20of%20Exponents%7D%5Cend%7Baligned%7D)
Learn more about Property Laws here:
brainly.com/question/28210762