(a) ( 1, 0 ) is the eigen vector for '-1' and ( 0, 1 ) is the eigen vector for '1'.
(b) two eigen values of 'k' = 1, -1
for k = 1, eigen vector is ![\left[\begin{array}{c}0\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
for k = -1 eigen vector is ![\left[\begin{array}{c}1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
See the figure for the graph:
(a) for any (x, y) ∈ R² the reflection of (x, y) over the y - axis is ( -x, y )
∴ x → -x hence '-1' is the eigen value.
∴ y → y hence '1' is the eigen value.
also, ( 1, 0 ) → -1 ( 1, 0 ) so ( 1, 0 ) is the eigen vector for '-1'.
( 0, 1 ) → 1 ( 0, 1 ) so ( 0, 1 ) is the eigen vector for '1'.
(b) ∵ T(x, y) = (-x, y)
T(x) = -x = (-1)(x) + 0(y)
T(y) = y = 0(x) + 1(y)
Matrix Representation of ![T = \left[\begin{array}{cc}-1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=T%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
now, eigen value of 'T'
![T - kI = \left[\begin{array}{cc}-1-k&0\\0&1-k\end{array}\right]](https://tex.z-dn.net/?f=T%20-%20kI%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1-k%260%5C%5C0%261-k%5Cend%7Barray%7D%5Cright%5D)
after solving the determinant,
we get two eigen values of 'k' = 1, -1
for k = 1, eigen vector is ![\left[\begin{array}{c}0\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
for k = -1 eigen vector is ![\left[\begin{array}{c}1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Hence,
(a) ( 1, 0 ) is the eigen vector for '-1' and ( 0, 1 ) is the eigen vector for '1'.
(b) two eigen values of 'k' = 1, -1
for k = 1, eigen vector is ![\left[\begin{array}{c}0\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
for k = -1 eigen vector is ![\left[\begin{array}{c}1\\0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C0%5Cend%7Barray%7D%5Cright%5D)
Learn more about " Matrix and Eigen Values, Vector " from here: brainly.com/question/13050052
#SPJ4