SOLUTION
Write out the polynomial given
The first group of the expresion is

GCE is x²
For the second group, we have

The GCE for the secod group is 25
To factorise completely, we have

Then by simplification, we have

Then factors are (3x +4)(x²+ 25)
To find the real root, we equate each of the factors to zero, hence

Thus
![\begin{gathered} \frac{3x}{3}=-\frac{4}{3} \\ x=-\frac{4}{3}\text{ is a real root } \\ or\text{ } \\ x^2=-25 \\ \text{take square root} \\ x=\pm_{}\sqrt[]{-25}\text{ not a real root} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7B3x%7D%7B3%7D%3D-%5Cfrac%7B4%7D%7B3%7D%20%5C%5C%20x%3D-%5Cfrac%7B4%7D%7B3%7D%5Ctext%7B%20is%20a%20real%20root%20%7D%20%5C%5C%20or%5Ctext%7B%20%7D%20%5C%5C%20x%5E2%3D-25%20%5C%5C%20%5Ctext%7Btake%20square%20root%7D%20%5C%5C%20x%3D%5Cpm_%7B%7D%5Csqrt%5B%5D%7B-25%7D%5Ctext%7B%20not%20a%20real%20root%7D%20%5Cend%7Bgathered%7D)
Therefore, since the root of -25 is a complex number,
The only real root is x = -4/3