Answer:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
Step-by-step explanation:
The question is poorly formatted.
Given
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Required
Derive an equivalent expression
![\sqrt[3]{2y^3} * 7\sqrt{18y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D)
Express 18 as 9 * 2
![\sqrt[3]{2y^3} * 7\sqrt{9 * 2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%20%2A%202y%7D)
Split the expression as follows:
![\sqrt[3]{2y^3} * 7\sqrt{9} * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B9%7D%20%2A%20%5Csqrt%7B2y%7D)
Take positive square root of 9
![\sqrt[3]{2y^3} * 7*3 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%2A3%20%2A%20%5Csqrt%7B2y%7D)
![\sqrt[3]{2y^3} * 21 * \sqrt{2y}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%2021%20%2A%20%5Csqrt%7B2y%7D)
![21*\sqrt[3]{2y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
The cube root can be rewritten to give:
![21*\sqrt[3]{2}*\sqrt[3]{y^3} * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%2A%5Csqrt%5B3%5D%7By%5E3%7D%20%2A%20%20%5Csqrt%7B2y%7D)
![\sqrt[3]{y^3} = y^{3*\frac{1}{3}} = y](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7By%5E3%7D%20%3D%20y%5E%7B3%2A%5Cfrac%7B1%7D%7B3%7D%7D%20%3D%20y)
So, we have:
![21*\sqrt[3]{2} * y * \sqrt{2y}](https://tex.z-dn.net/?f=21%2A%5Csqrt%5B3%5D%7B2%7D%20%2A%20y%20%2A%20%20%5Csqrt%7B2y%7D)
Rewrite as:
![21y *\sqrt[3]{2} * \sqrt{2y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2y%7D)
Split 
![21y *\sqrt[3]{2} * \sqrt{2} * \sqrt{y}](https://tex.z-dn.net/?f=21y%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D%20%2A%20%5Csqrt%7By%7D)
Collect Like Terms
![21y*\sqrt{y} *\sqrt[3]{2} * \sqrt{2}](https://tex.z-dn.net/?f=21y%2A%5Csqrt%7By%7D%20%2A%5Csqrt%5B3%5D%7B2%7D%20%20%2A%20%20%5Csqrt%7B2%7D)
Represent in index form

Apply law of indices




Hence:
![\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2y%5E3%7D%20%2A%207%5Csqrt%7B18y%7D%20%3D%2021%28y%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%29%282%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%29)
Answer:
x=-3
y=2
Step-by-step explanation:
To solve this problem you can use the elimination method:
- Multiply the second equation by -6:

- Add both equations:

- Substitute the value of x into one of the original equations and solve for y:

Spider-Man 120
Superman 40
Well alternate angles are congruent, so that means they would both have the same measurement.
If you’re talking about equations with an angle then make the equations equal each other and solve. :)