Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiii
Answer:
0.026 V
Explanation:
Given that,
Inductance of the coil, L = 6 mH
The current changes from 0.2 A to 1.5 A in a time interval of 0.3 s
We need to find the magnitude of the average induced emf in the coil during this time interval. The formula for the induced emf is given by :

So, the magnitude of induced emf is 0.026 volts.
Answer:
Explanation:
The plasma membrane is composed of a bilayer of phospholipids, with their hydrophobic, fatty acid tails in contact with each other. ... Carbohydrates are attached to some of the proteins and lipids on the outward-facing surface of the membrane. These form complexes that function to identify the cell to other cells.
Answer:
=1419.19 meters.
Explanation:
The time it takes for the shell to drop to the tanker from the height, H =1/2gt²
610m=1/2×9.8×t²
t²=(610m×2)/9.8m/s²
t²=124.49s²
t=11.16 s
Therefore, it takes 11.16 seconds for a free fall from a height of 610m
Range= Initial velocity×time taken to hit the tanker.
R=v₁t
Lets change 300 mph to kph.
=300×1.60934 =482.802 kph
Relative velocity=482.802 kph-25 kph
=457.802 kph
Lets change 11.16 seconds to hours.
=11.16/(3600)
=0.0031 hours.
R=v₁t
=457.802 kph × 0.0031 hours.
=1.41918 km
=1.41919 km × 1000m/km
=1419.19 meters.
For finding the orbital speed of the satellite we can say that the centripetal force for the circular motion of satellite is provided by the gravitational force of earth
so here we can say


now we will have

now here we will say that orbital speed of the satellite is inversely depends on the orbital radius
<em>So here if orbital speed is half then as per above relation we can say that orbital distance will become four times</em>
<em>Also we can say that if orbital speed is double then orbital distance will become one fourth of initial distance.</em>