Observe that the object below moves in the negative direction with a changing velocity. An object which moves in the negative direction has a negative velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a positive acceleration). The dot diagram shows that each consecutive dot is not the same distance apart (i.e., a changing velocity). The position-time graph shows that the slope is changing (meaning a changing velocity) and negative (meaning a negative velocity). The velocity-time graph shows a line with a positive (upward) slope (meaning that there is a positive acceleration); the line is located in the negative region of the graph (corresponding to a negative velocity). The acceleration-time graph shows a horizontal line in the positive region of the graph (meaning a positive acceleration).
I don't know how I can show you the figure
It is because the potential energy is similar to MgH.
When it comes to MgH, it means mass, gravity and height respectively.
By using the value of acceleration, seema will find the potential energy of a ball.
Answer:
It is very rare to see a solar eclipse from your home, because the Earth, Sun, and the moon need to align just right. Not everyone in the world can view a solar eclipse, only some area can. A solar eclipse is where the moon blocks out the sun. If you think about it: Let's say you live in Florida, U.S.A. You may see the moon coming in front of the sun, but if you lived in California or sumthin', the moon and the sun wouldn't be aligned to form a solar eclipse. It all depends on location... so it is rare to see one.
Wind or gravitational pull. A wave is made by friction between wind and the water’s surface. Waves can also be made by the sun and moon’s gravitational pull on the earth.
Answer:
True
Explanation:
Because I had a test on this