Answer:
The answer to your question is: 101.2 g of CO2
Explanation:
C = 27.6 g
O₂ = 86.5 g remained 12.9 g
O₂ that reacted = 86.5 - 12.9 = 73.6 g
C + O₂ ⇒ CO₂ The equation is balanced
27.6 73.6 ?
MW 12 32 44
Rule of three
12 g of C------------------ 44 g CO2
27.6 g C ------------------ x
x = 27.6(44)/12 = 101.2 g of CO2
32 g of O2 --------------- 44 g of CO2
73.6 g of O2 ------------ x
x = 73.6(44)/32 = 101.2 g of CO2
Answer:
Option C, (Actual yield ÷ percent yield) × 100
Explanation:
Theoretical yield is defined as the total amount of product formed for given reactants in a chemical reaction. It is an ideal case which assumes no exceptions or wastage.
The mathematical relation between the actual yield, percent yield and theoretical yield is as follows -

Where
P.Y. represents the percent yield a
M A.Y. represents the mass obtained from actual yield
M T.Y. represents the mass obtained from theoretical yield
Hence, if we rearrange the formula, we get -

Hence, option C is correct
ANSWER
Power stroke
EXPLANATION
At the power stroke stage, the piston is forced to move down by the expanding gases as both intake valve and exhaust valve are closed.
A spark from the spark plug contributes to ignition of the compressed fuel air mixture to released energy to perform work.
Answer:This is what's known as a metal displacement reaction: the lead substitutes for the copper and ends up precipitating out of solution as insoluble lead (II) sulfate. ... The weight of copper deposited was 15.86gm.
Explanation:
Answer is: B because it has a lower activation energy.
For all chemical reaction some energy is required and that energy is called activation energy (energy that needs to be absorbed for a chemical reaction to start), activation energy for reaction B is lower that for reaction A.
Catalysis is the increase in the rate of a chemical reaction due to the participation of an additional substance called a catalyst.
Chemical reactions occur faster with a catalyst because they require less activation energy.