Answer:
Given that an article suggests
that a Poisson process can be used to represent the occurrence of
structural loads over time. Suppose the mean time between occurrences of
loads is 0.4 year. a). How many loads can be expected to occur during a 4-year period? b). What is the probability that more than 11 loads occur during a
4-year period? c). How long must a time period be so that the probability of no loads
occurring during that period is at most 0.3?Part A:The number of loads that can be expected to occur during a 4-year period is given by:Part B:The expected value of the number of loads to occur during the 4-year period is 10 loads.This means that the mean is 10.The probability of a poisson distribution is given by where: k = 0, 1, 2, . . ., 11 and λ = 10.The probability that more than 11 loads occur during a
4-year period is given by:1 - [P(k = 0) + P(k = 1) + P(k = 2) + . . . + P(k = 11)]= 1 - [0.000045 + 0.000454 + 0.002270 + 0.007567 + 0.018917 + 0.037833 + 0.063055 + 0.090079 + 0.112599 + 0.125110+ 0.125110 + 0.113736]= 1 - 0.571665 = 0.428335 Therefore, the probability that more than eleven loads occur during a 4-year period is 0.4283Part C:The time period that must be so that the probability of no loads occurring during that period is at most 0.3 is obtained from the equation:Therefore, the time period that must be so that the probability of no loads
occurring during that period is at most 0.3 is given by: 3.3 years
Step-by-step explanation:
The equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
<h3>How to determine the functions?</h3>
A quadratic function is represented as:
y = a(x - h)^2 + k
<u>Question #6</u>
The vertex of the graph is
(h, k) = (-1, 2)
So, we have:
y = a(x + 1)^2 + 2
The graph pass through the f(0) = -2
So, we have:
-2 = a(0 + 1)^2 + 2
Evaluate the like terms
a = -4
Substitute a = -4 in y = a(x + 1)^2 + 2
y = -4(x + 1)^2 + 2
<u>Question #7</u>
The vertex of the graph is
(h, k) = (2, 1)
So, we have:
y = a(x - 2)^2 + 1
The graph pass through (1, 3)
So, we have:
3 = a(1 - 2)^2 + 1
Evaluate the like terms
a = 2
Substitute a = 2 in y = a(x - 2)^2 + 1
y = 2(x - 2)^2 + 1
<u>Question #8</u>
The vertex of the graph is
(h, k) = (1, -2)
So, we have:
y = a(x - 1)^2 - 2
The graph pass through (0, -3)
So, we have:
-3 = a(0 - 1)^2 - 2
Evaluate the like terms
a = -1
Substitute a = -1 in y = a(x - 1)^2 - 2
y = -(x - 1)^2 - 2
Hence, the equations of the functions are y = -4(x + 1)^2 + 2, y = 2(x - 2)^2 + 1 and y = -(x - 1)^2 - 2
Read more about parabola at:
brainly.com/question/1480401
#SPJ1
Answer:
$5,665
Step-by-step explanation:
First, you multiply 5,500 times 3 to get 16,500, and then divide by 100 to get 165. That is how much she earned over the past three years, but it is NOT her new account balance, because you have to add 5,500 and 165, which you would get a final sum of $5,665. I hope this helps :)