1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jobisdone [24]
1 year ago
11

I need help ASAP, this is with khan academy.

Mathematics
1 answer:
BARSIC [14]1 year ago
6 0

Answer:

◉ No

Step-by-step explanation:

   a vertical line is not a function because it will not survive the vertical line test, VLT.

the VLT is a vertical line that touches functions, if it touches it twice or more, then it's not a function

=======================================

\textcopyright ELIZA \bullet22/09/'22

\#CARRYONLEARNING :)

You might be interested in
Sorry if it’s hard to read :( need some help, can’t seem to focus.. ~ <3 thank you
kvasek [131]

Answer:

Huh?

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
Which function has the same domain as y=2_/x?​
navik [9.2K]

Answer:

A. y = square root of 2x

We are given the function

y = 2 √x

We are asked for the function that has the same domain as the given function

First, the domain for the given function is this

{ x | x ≥ 0 }

So, any function that has a domain of x that is equal to or greater than 0. Some examples:

f(x) = √x  -  2

f(x) = 5 √x

8 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
2 years ago
Read 2 more answers
2 d2 + 15d + 23 = 3<br> It’s quadratic formula
DENIUS [597]

Answer:

-15 plus or minus the square root of 65 all over 4 (All over means fraction)

4 0
2 years ago
1. What is the area of this triangle?
Nimfa-mama [501]

Answer:

for the trapezoid it is 336

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • One of the same side angles of two parallel lines is 20° smaller than the other one. Find all angles. Please explain this proble
    10·1 answer
  • Simplify<br>96<br>7<br><br><br><br>Can someone help me out??​
    6·2 answers
  • 4y/5b=L+s solve for B
    6·1 answer
  • If 2 sodas and 3 hot dogs are $17 while 5 sodas and 6 hot dogs are $38.75 - how much are each separately?
    13·1 answer
  • Use the points A(4, 4) and B(4, −5). Complete the description of segment AB and find its length.
    5·1 answer
  • Plz help me I am <br> Stuck
    6·1 answer
  • Complete the equation of the line whose y- intercept is (0,5) and slope is -9
    13·1 answer
  • What is 0.5% of 1,000 pounds
    5·2 answers
  • Solve for x: 2x^2+3x=2
    7·2 answers
  • A board that is 6.5 feet long has a section cut off that is 3.8 feet long. How much of the board is left?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!