Answer:
So Philip made 5 bracelets and 4 necklaces.
Step-by-step explanation:
Let x = number of bracelets and y = number of necklaces.
Since we have a total of 9 bracelets and necklaces,
x + y = 9 (1)
Also, we have 8 inches of cord for each bracelet and 20 inches of cord for each necklace, then the total length for the bracelet is 8x and that for the necklace is 20y.
So, the total length for both is 8x + 20y. Since the total length of cord used is 120 inches,
8x + 20y = 120 (2)
Simplifying it we have
2x + 5y = 30 (3).
Writing equations (1) and (3) in matrix form, we have
![\left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}9\\30\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%5C%5C30%5Cend%7Barray%7D%5Cright%5D)
Using Cramer's rule to solve for x and y,
![x = det \left[\begin{array}{ccc}9&1\\30&5\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=x%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%261%5C%5C30%265%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
x = (9 × 5 - 30 × 1) ÷ (1 × 5 - 1 × 2)
x = (45 - 30) ÷ (5 - 2)
x = 15 ÷ 3
x = 5
![y = det \left[\begin{array}{ccc}1&9\\2&30\end{array}\right] /det \left[\begin{array}{ccc}1&1\\2&5\end{array}\right] \\](https://tex.z-dn.net/?f=y%20%3D%20det%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%269%5C%5C2%2630%5Cend%7Barray%7D%5Cright%5D%20%2Fdet%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%5C%5C2%265%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
y = (30 × 1 - 9 × 2) ÷ (1 × 5 - 1 × 2)
y = (30 - 18) ÷ (5 - 2)
y = 12 ÷ 3
y = 4
So Philip made 5 bracelets and 4 necklaces.
Consider the closed region

bounded simultaneously by the paraboloid and plane, jointly denoted

. By the divergence theorem,

And since we have

the volume integral will be much easier to compute. Converting to cylindrical coordinates, we have




Then the integral over the paraboloid would be the difference of the integral over the total surface and the integral over the disk. Denoting the disk by

, we have

Parameterize

by


which would give a unit normal vector of

. However, the divergence theorem requires that the closed surface

be oriented with outward-pointing normal vectors, which means we should instead use

.
Now,



So, the flux over the paraboloid alone is
Hhhhhhhhahahahahahahahahahahaahabahahah 4.7
Hello There!
It is represented as: h =
Hope This Helps You!Good Luck :)
- Hannah ❤