1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
2 years ago
10

Here's a brain teaser. (I already know the answer) 1=5 2=10 3=15 4=20 5=?

Mathematics
2 answers:
prisoha [69]2 years ago
8 0

Answer:

5 = 1

or

5 = 25

Step-by-step explanation:

I've seen two answers to this.

1. Since we are told 1 = 5, then 5 = 1.

One answer is 1 = 5

2. Since each number on the right is 5 times the number on the left, then 25 corresponds to 5, and 5 = 25.

aivan3 [116]2 years ago
4 0

Answer: 5=1 (The correct answer) 5=25 (The answer that makes sense but is not correct).

Step-by-step explanation:

Explanation for answer 1: It say's that 1 = 5.

Explanation for answer 2: If we follow the pattern of adding 5 each time we go up a number then 5 would equal 25.

You might be interested in
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
See Photo for information on how to answer
stiks02 [169]

Answer:

It is a Geometric sequence

Common ratio = 1/5

Step-by-step explanation:

Whole chain: 25, 5, 1, 1/5, 1/25, 1/125,  1/625,  1/3125

Hope this helped

6 0
3 years ago
Find the inverse please and thank you
Amanda [17]

The inverse f^{-1}(x) is such that

f\left(f^{-1}(x)\right) = x

We have

f\left(f^{-1}(x)\right) = -9\sqrt{f^{-1}(x) - 8} + 5 = x

Solve for the inverse.

-9\sqrt{f^{-1}(x)-8} + 5 = x \\\\ -9\sqrt{f^{-1}(x)-8} = x-5 \\\\ \sqrt{f^{-1}(x)-8} = -\dfrac{x-5}9 \\\\ \left(\sqrt{f^{-1}(x)-8}\right)^2 = \left(-\dfrac{x-5}9\right)^2 \\\\ f^{-1}(x) - 8 = \dfrac{(x-5)^2}{81} \\\\ \boxed{f^{-1}(x) = 8 + \dfrac{(x-5)^2}{81}}

5 0
2 years ago
A triangle has side lengths of (7x-4)(7x−4) centimeters, (x+3)(x+3) centimeters, and (3y+2)(3y+2) centimeters. Which expression
Papessa [141]

Answer:

<u>This assumes that the question was meant to read:</u>

"A triangle has side lengths of (7x−4) centimeters, (x+3) centimeters, and (<u>3x+2</u>) centimeters."  <u>And not </u>"A triangle has side lengths of (7x-4)(7x−4) centimeters, (x+3)(x+3) centimeters, and (3y+2)(3y+2) centimeters."

If the revision is correct, the perimeter is 11x + 1 cm

=============================================

<u>If the question was correctly written, then answer is:</u>

50x^2 - 50x + 9y^2  + 12 y  + 29

===============

Step-by-step explanation:

  (7x-4) cm

+ (x+3)  cm

<u>+ (3x+2) cm</u>

11x + 1 cm

If the question was correctly written as is, then:

(7x-4)(7x−4) = 49x^2 - 56x + 16

+(x+3)(x+3)    =     + x^2   + 6x   + 9

+(3y+2)(3y+2) = <u> +9y^2  + 12 y  + 4</u>

                         50x^2 - 50x + 9y^2  + 12 y  + 29 cm

                       

8 0
2 years ago
Who play basketball?
babymother [125]

Answer:

LeBron James

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Show how you can use the Distributive property to rewrite and find (32×6)+(32×4)
    15·1 answer
  • Determine the amplitude of the function y = -2 sin x from the graph shown below:
    8·1 answer
  • 45 miles in 40 minutes
    13·1 answer
  • &lt; BACK TO ASSESSMENT - MTHO6B SUMMATH6_AC
    8·1 answer
  • The distributive property 3(8-x)
    15·1 answer
  • A + B + C = 4 <br> step by step please​
    10·1 answer
  • Write the expression below in standard form 5h-3(2+2h)​
    10·2 answers
  • Who leads in a theocracy?
    5·1 answer
  • I have limited time on this ho3 ... i'll give brainlist !!!!!!!!:((
    9·1 answer
  • The actual length of the ship is 575 feet. The scale of the model is 1 inch: 25 feet. What will be the length of the model?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!