Answer:
27.5 mm
Step-by-step explanation:
The game piece has the shape of two identical square pyramids attached at their bases. Given that the perimeters of the square bases are 80 millimeters, and the slant height of each pyramid is 17 millimeters.
Let the side length of each of the side of the base of the pyramid be b, hence:
perimeter = 4b
80 = 4b
b = 20 mm. half of the side length = b/2 = 20 / 2 = 10 mm
The slant height (l) = 17 mm, Let h be the height of one of the pyramid, hence, using Pythagoras theorem:
(b/2)² + h² = l²
17² = 10² + h²
h² = 17² - 10² = 189
h = √189
h = 13.75 mm
The length of the game piece = 2 * h = 2 * 13.75 = 27.5 mm.
Answer:
y=8/7x+5
Step-by-step explanation:
y=mx+b but m is your slope and b is your y intercept.
Answer:
1. 87
A77
B24
C93
D47
E 31
F 48
2. 160
A10
B20
C30
D40
E 50
F 60
3. 68
A851
B295
C302
D574
E 112
F 638
4. 174
A3
B4
C5
D 6
E 7
F 8
5. a
A180-a
B180/2
C 179*a
D 179+a
E 60
F pi
Find the complementary angles of the following.
6. 53
A90
B32
C 25
D 45
E 18
F 37
7. 12
A46
B78
C98
D31
E 52
F 64
8. 73.5
A16.5
B34.2
C29.4
D17.7
E 57.9
F 11.3
9. 23.7
A66.3
B70.1
C42.5
D83.9
E 54.8
F 36.2
10. a
A90/a
Ba-90
Ca/2
D90-a
E 90-2
F a^2
Two of the angles are listed. Find the measure of the third angle in each triangle. Similar to example 6
11. 16,42
A256
B421
C107
D510
E 122
F 329
12. 90, 30
A23
B42
C47
D60
E 71
F 89
13. 43, 118
A12
B34
C19
D57
E 11
F 27
14. 60, 60
A15
B90
C29
D60
E 30
F 45
15. 14, 123
A73
B25
C38
D19
E 43
F 13
16. 68, 86
A45
B56
C26
D19
E 32
F 82
17. 55, 77
A18
B37
C62
D57
E 20
F 48
18. a, (a + 80)
A100 - 2a
B112 - 7a
C182 - 2a
D254 - 5a
E 311 - 3a
F 302 - 1a
19. x, (x + 20)
A189 - 7x
B167 - 1x
C114 - 5x
D160 - 2x
E 124 - 2x
F 142 - 1x
20. m, 2m
A172 - 2m
B187 - 7m
C124 - 4m
D143 - 1m
E 164 - 9m
F 180 - 3m
1. C
2. B
3. E
4. D
5. D
6. F
7. B
8. A
9. A
10. B
11. D
12. A
13. D
14. B
15. A
16. C
17. F
18. A
19. D
20. F
Step-by-step explanation:
Answer:
Step-by-step explanation:
360
In a 45 - 45 - 90 right triangle, the hypotenuse is √2 · legs = hypotenuse, so legs=
and to rationalize the denominator all we have to do is multiply the numerator and denominator by √2.
.