1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
1 year ago
8

Is this a discrete or continuous function? Explain.

Mathematics
1 answer:
faust18 [17]1 year ago
3 0

A graph with points (-5, -2), (1, 5), and (-5, 5) represents a discrete function.

<h3>What is a graph?</h3>

A graph can be defined as a type of chart that's commonly used to graphically represent data on both the horizontal and vertical lines of a cartesian coordinate, which are the x-axis and y-axis.

<h3>What is a discrete function?</h3>

A discrete function can be defined as a type of function in which the ordered pair of values on the x-axis and y-axis are separate from each other and unconnected.

In conclusion, the function which this graph represents is a discrete function because both the domain (-5, 1) and range (-2, 5) have discrete set of values, rather than intervals.

Read more on discrete function here: brainly.com/question/25304788

#SPJ1

You might be interested in
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
3 years ago
I need help with this ​
Fynjy0 [20]

Answer: 216 in

Step-by-step explanation: I used the formula A=1/2(b1+b1)h and I filled it in by doing A=1/2(6+12)6 and then I divided the height by 1/2 and i multiplied 72 by 3 which is 216 in.

3 0
4 years ago
Find all solutions to 5cosθ = 3cosθ - 1.
IrinaVladis [17]
Hello : 
<span>5cosθ = 3cosθ - 1.   
</span><span>5cosθ - 3cosθ = 1.
2cos</span>θ =1
cosθ =1/2
all solutions : 
 cosθ =cos<span>π<span>/3
</span></span>all solutions :
θ =π/3 +2kπ     or θ = - π/3 +2kπ ....k in Z

6 0
3 years ago
PLEASE HELP ME !!! 5. Jack is choosing between two pest control companies, Mouse Arrest and Hugs, not Bugs. The amount that the
GalinKa [24]

The solution to the equation is (5, 250) which is the point of intersection.

<h3>Linear equation</h3>

A linear equation is in the form:

y = mx + b

where y, x are variables, m is the slope of the line and b is the y intercept.

Let y represent the total cost for renting pest company for x months.

Given the equation y = 25x + 125 and y = 50x. Graphing the equations.

The solution to the equation is (5, 250) which is the point of intersection.

Find out more on Linear equation at: brainly.com/question/14323743

8 0
3 years ago
Dave has $8000 to invest for 15 years. He finds a bank that offers an interest rate of 3.1% compounded monthly. How much money w
ioda

Dave will have $12,728 after 15 years, if he has $8000 to invest for 15 years. He finds a bank that offers an interest rate of 3.1% compounded monthly.

Step-by-step explanation:

The given is,

                 Investment = $ 8000

               No. of years = 15 years

             Interest rate, i = 3.1 %

                 ( compounded monthly )  

Step:1

          For for calculating future value with compound interest monthly,

                                     A = P (1 +\frac{r}{n})^{nt}.................(1)

         Where,

                     A = Future amount

                     P = Initial investment

                     r = Rate of interest

                    n = Number of compounding in a year

                     t = Time period

Step:2

           From given values,

                           P = $8000

                            r =  3.1%

                            t = 15 years

                            n = 12 ( for monthly)

           Equation (1) becomes,

                          A = 8000( 1+\frac{0.031}{12} )^{(12)(15)}

                              = 8000 (1+0.002583)^{180}

                              = 8000(1.002583)^{180}

                              = 8000(1.591059)

                              =12728.48

                           A = $ 12728.48

Result:

           Dave will have $12,728 after 15 years, if he has $8000 to invest for 15 years. He finds a bank that offers an interest rate of 3.1% compounded monthly.

                             

       

8 0
4 years ago
Other questions:
  • What’s the value of x?
    10·2 answers
  • Suppose you graph the points (time, distance) and your friend graphs (distance, time) . How will your graphs be different
    10·1 answer
  • Mr. Jones jogs the same route each day. The amount of time he jogs is inversely proportional to his jogging rate.
    5·1 answer
  • HELP ME PLZ!!!
    11·2 answers
  • Solve 7.8+3.5w-1.5 for w = 6.8 using PEMDAS
    7·1 answer
  • Which statement is true about the prime polynomial
    5·1 answer
  • ANSWER ASAP The questions on a multiple-choice test each have 5 answer choices.
    8·1 answer
  • Please help extra points and Mark brainlist
    13·1 answer
  • What’s 7/12+1/3 in fractions show your work
    12·2 answers
  • Elizabeth bought 125 meters of fabric to make a patchwork quilt
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!