The probability that a face card can be drawn from a standard deck of cards is 12/52 which can be simplified into 3/13.
The expected value is the product of the probability and the value.
Expected value = (3/13)($1) = $0.23
The difference between the amount spent and the expected value is equal to $0.27.
The solution of this question will make use of the Two Tangents from Point Theorem which states that "the measure of an angle formed by two tangents drawn from a point outside the circle is half the the difference of the intercepted arcs".
We can also see that the measure of arcs are:
and
Thus, as per the theorem, the measure of the
can be calculated as:

Therefore, we get:

Thus, out of the given options, option B is the correct option.
Answer:
So we know that rolling a fair six-sided die twice would mean the total possible outcomes would be 36, and rolling the 4 on the first roll and a 2 on the second roll would be 2/36 or 1/18
Step-by-step explanation:
(1/6)*(1/6)=(2/36)=(1/18)
Answer:
![\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B5x%2B24%7D%7B36x-6x%5E2%7D%29%5D)
Step-by-step explanation:
Given function:
y =
we know
= ln(A) - ln(B)
thus,
y = 
or
also,
ln(Aⁿ) = n × ln(A)
thus,
y = 
therefore,
![\frac{dy}{dx}=[(\frac{3}{2})\times\frac{1}{(6-x)}\times(0 - 1)] - [ (\frac{2}{3})\times\frac{1}{x}\times1]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5B%28%5Cfrac%7B3%7D%7B2%7D%29%5Ctimes%5Cfrac%7B1%7D%7B%286-x%29%7D%5Ctimes%280%20-%201%29%5D%20-%20%5B%20%28%5Cfrac%7B2%7D%7B3%7D%29%5Ctimes%5Cfrac%7B1%7D%7Bx%7D%5Ctimes1%5D)
or

or
![\frac{dy}{dx}=-[(\frac{3(3x)+2\times2(6-x)}{2(6-x)\times(3x)})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B3%283x%29%2B2%5Ctimes2%286-x%29%7D%7B2%286-x%29%5Ctimes%283x%29%7D%29%5D)
or
![\frac{dy}{dx}=-[(\frac{5x+24}{36x-6x^2})]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5B%28%5Cfrac%7B5x%2B24%7D%7B36x-6x%5E2%7D%29%5D)
The equivalent is 60 over a hundred