Please help :)))) ( attachment )
1 answer:
Let, f(x) = -2x+34 g(x) = (-x/3) - 10 h(x) = -|3x| k(x) = (x-2)^2 This is a trial and error type of problem (aka "guess and check"). There are 24 combinations to try out for each problem, so it might take a while. It turns out that g(h(k(f(15)))) = -6 f(k(g(h(8)))) = 2So the order for part A should be: f, k, h, g The order for part B should be: h, g, k f note how I'm working from the right and moving left (working inside and moving out). Here's proof of both claims ----------------------------------------- Proof of Claim 1: f(x) = -2x+34 f(15) = -2(15)+34 f(15) = 4 ----------------- k(x) = (x-2)^2 k(f(15)) = (f(15)-2)^2 k(f(15)) = (4-2)^2 k(f(15)) = 4 ----------------- h(x) = -|3x| h(k(f(15))) = -|3*k(f(15))| h(k(f(15))) = -|3*4| h(k(f(15))) = -12 ----------------- g(x) = (-x/3) - 10 g(h(k(f(15))) ) = (-h(k(f(15))) /3) - 10 g(h(k(f(15))) ) = (-(-12) /3) - 10 g(h(k(f(15))) ) = -6 ----------------------------------------- Proof of Claim 2: h(x) = -|3x| h(8) = -|3*8| h(8) = -24 --------------- g(x) = (-x/3) - 10 g(h(8)) = (-h(8)/3) - 10 g(h(8)) = (-(-24)/3) - 10 g(h(8)) = -2 --------------- k(x) = (x-2)^2 k(g(h(8))) = (g(h(8))-2)^2 k(g(h(8))) = (-2-2)^2 k(g(h(8))) = 16 --------------- f(x) = -2x+34 f(k(g(h(8))) ) = -2*(k(g(h(8))) )+34 f(k(g(h(8))) ) = -2*(16)+34 f(k(g(h(8))) ) = 2
You might be interested in
{x=2+y {-6x-6y=-12 -6(2+y) -6y = -12 -12 - 6y - 6y = -12 -12y = -12 + 12 -12y = 0 y = 0 x = 2 + y = 2 + 0 = 2 Answer: x=2, y=0
Answer:
18+17=35
Step-by-step explanation:
Answer:
840
Step-by-step explanation:
Given
Required
Determine the number of rankings
The term "ranking" as used in this question implies permutation and the required is calculated using:
Where
So:
<em>Hence, number of ranking is 840</em>