1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
11 months ago
12

4x2 + 4x - 1, evaluate and fully simplify each of the - For the function f(0) following f(s + h) f(x + h) - f(5) h 10

Mathematics
1 answer:
Andrew [12]11 months ago
7 0

Given the function f(x);

f(x)=-4x^2+4x-1

Evaluating the function f(x+h);

\begin{gathered} f(x+h)=-4(x+h)^2+4(x+h)-1 \\ f(x+h)=-4(x^2+2xh+h^2)^{}+4(x+h)-1 \\ f(x+h)=-4x^2-4h^2-8xh^{}+4x+4h-1 \end{gathered}

So;

f(x+h)=-4x^2-4h^2-8xh^{}+4x+4h-1

Evaluating the second function;

\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{-4x^2-4h^2-8xh^{}+4x+4h-1-(-4x^2+4x-1)}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4x^2-4h^2-8xh^{}+4x+4h-1+4x^2-4x+1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4x^2+4x^2-4h^2-8xh^{}+4x-4x+4h-1+1}{h} \\ \frac{f(x+h)-f(x)}{h}=\frac{-4h^2-8xh^{}+4h}{h} \end{gathered}

simplifying further;

\begin{gathered} \frac{f(x+h)-f(x)}{h}=\frac{-4h^2-8xh^{}+4h}{h}=-4h-8x+4 \\ \frac{f(x+h)-f(x)}{h}=-4h-8x+4 \end{gathered}

Therefore, we have;

undefined

You might be interested in
You ask 200 randomly chosen students to name their favorite ice cream flavor. There are 1800 students in the school. Based on th
Kaylis [27]

Answer:

351

Step-by-step explanation:

Complete question :

Vanilla= 36

Chocolate=21

Strawberry=24

Chocolate Chip=39

SOLUTION:

39 chocolate chip to 200 students = x chocolate chip to 1800 students

39/200 = x / 1800

Solving for 'x'

(200)(x) = (39)(1800)

200x = 70200

x = 70200/200

x = 351

OR

39 out of 200 picked chocolate chip

therefore, 39/200 = 0.195 = 19.5%  ( 32.5% chose chocolate chip)

19.5% of 1800 = 0.195(1800) = 351 students

6 0
3 years ago
Write a recursive formula for
algol13

9514 1404 393

Answer:

  • a[1] = 3
  • a[n] = a[n-1] -7

Step-by-step explanation:

A recursive formula consists of two parts:

  • initialization (rule for the first term(s))
  • rule for the next term

When we look at the differences between terms in the sequence 3, -4, -11, ..., we find that they are constant at -7. That is each term can be found from the previous one by subtracting 7. This is our recursive rule. The first term is obviously 3, so the recursive formula is ...

  a[1] = 3

  a[n] = a[n-1] -7

5 0
3 years ago
HELP PLEASE I HAVE ONLY A FEW MINUTES TO GET THIS DONE.
oee [108]

Answer:

x=5.5

Step-by-step explanation:

LN and KM intersect and are in the same rectangle, which makes them the same line essentially. Set 49 equal to 6x+16 and then solve to get x by itself.

5 0
3 years ago
Read 2 more answers
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
The coefficient of -x is 1
juin [17]

Answer:

it -1

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Three rational numbers between 1/4 and 1/5
    12·2 answers
  • 8
    5·1 answer
  • Can somebody please help me????
    10·1 answer
  • PLEASE HELP!!!
    9·2 answers
  • What is the slope of the line whose equation is –48 = 2x − 8y?
    7·2 answers
  • Determine mBFD.<br> 65<br> 90<br> 220<br> 110
    9·1 answer
  • Maria runs 10 miles every day. If she doubles her usual speed, she can run the 10 miles in one hour less than her usual time. Wh
    13·1 answer
  • An investment of ​$100 comma 000 was made by a business club. The investment was split into three parts and lasted for one year.
    5·1 answer
  • What is the volume of the sphere? 20 "!!points!!" and who gets it right first gets the brainliest.
    10·2 answers
  • Please tell me what this is,....
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!