Knowledge...- software QA engineer
Master’s...- business analyst
course...- network and computer admin
training...- multimedia artist
Answer:
The complete program is as follows:
def convert_distance(miles):
km = miles * 1.6 # approximately 1.6 km in 1 mile
return km
my_trip_miles = 55
# 2) Convert my_trip_miles to kilometers by calling the function above
my_trip_km =convert_distance(my_trip_miles) #3) Fill in the blank to print the result of the conversion
# 4) Calculate the round-trip in kilometers by doubling the result,
print("The distance in kilometers is " +str(my_trip_km))
# and fill in the blank to print the result
print("The round-trip in kilometers is " + str(my_trip_km * 2))
Explanation:
<em>The program is self-explanatory because I used the same comments in the original question.</em>
Answer:
e(a) = 0
e(b) = 10
e(c) = 110
e(d) = 1110
Explanation:
The Worst case will happen when f(a) > 2*f(b) ; f(b) > 2*f(c) ; f(c) > 2*f(d) ; f(d) > 2*f(e) and f(e) > 2*f(f).
Where f(x) is frequency of character x.
Lets consider the scenario when
f(a) = 0.555, f(b) = 0.25, f(c) = 0.12, f(d) = 0.05, f(e) = 0.02 and f(f) = 0.005
Please see attachment for image showing the steps of construction of Huffman tree:- see attachment
From the Huffman tree created, we can see that endcoding e() of each character are as follows:-
e(a) = 0
e(b) = 10
e(c) = 110
e(d) = 1110
e(e) = 11110
e(f) = 11111
So we can see that maximum length of encoding is 5 in this case.
Answer:
Person-to-Group
Explanation:
Person-to-Group communication involves one speaker and audience.