Answer:
3rd option
Step-by-step explanation:
( factorise numerator and denominator )
3x² - 3 ← factor out 3 from each term
= 3(x² - 1²) ← x² - 1 is a difference of squares and factors in general as
a² - b² = (a - b)(a + b)
x² - 1
= x² - 1²
= (x - 1)(x + 1) , then
3x² - 3 = 3²(x - 1)(x + 1) ← in factored form
--------------------------------
x² - 5x + 4
consider the factors of the constant term (+ 4) which sum to give the coefficient of the x- term (- 5)
the factors are - 1 and - 4 , since
- 1 × - 4 = + 4 and - 1 - 4 = - 5 , then
x² - 5x + 4 = (x - 1)(x - 4)
then
=
← in factored form
It is < because the left one is in the thousandths, and the right is in the hundredths for decimal.<span />
I'm reading this as

with

.
The value of the integral will be independent of the path if we can find a function

that satisfies the gradient equation above.
You have

Integrate

with respect to

. You get


Differentiate with respect to

. You get
![\dfrac{\partial f}{\partial y}=\dfrac{\partial}{\partial y}[x^2e^{-y}+g(y)]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5Bx%5E2e%5E%7B-y%7D%2Bg%28y%29%5D)


Integrate both sides with respect to

to arrive at



So you have

The gradient is continuous for all

, so the fundamental theorem of calculus applies, and so the value of the integral, regardless of the path taken, is