Answer:
<h3>
It can be concluded that this polynomial has a degree of 2, so the equation x²+x−12=0 has exactly two root</h3>
Step-by-step explanation:
Given the quadratic polynomial x²+x−12, the highest power in the quadratic polynomial gives its degree. The degree of this quadratic polynomial is therefore 2. <u>This means that the equation has exactly two solutions. </u>
Let us determine the nature of the roots by factorizing the quadratic polynomial and finding the roots.
x²+x−12 = 0
x²+4x-3x−12 = 0
= (x²+4x)-(3x−12) = 0
= x(x+4)-3(x+4) = 0
= (x-3)(x+4) = 0
x-3 = 0 and x+4 = 0
x = 3 and -4
This shows that the quadratic polynomial has <u>two real roots</u>
<u>It can be concluded that this polynomial has a degree of 2, so the equation x²+x−12=0 has exactly two roots</u>
Answer:
Class interval 10-19 20-29 30-39 40-49 50-59
cumulative frequency 10 24 41 48 50
cumulative relative frequency 0.2 0.48 0.82 0.96 1
Step-by-step explanation:
1.
We are given the frequency of each class interval and we have to find the respective cumulative frequency and cumulative relative frequency.
Cumulative frequency
10
10+14=24
14+17=41
41+7=48
48+2=50
sum of frequencies is 50 so the relative frequency is f/50.
Relative frequency
10/50=0.2
14/50=0.28
17/50=0.34
7/50=0.14
2/50=0.04
Cumulative relative frequency
0.2
0.2+0.28=0.48
0.48+0.34=0.82
0.82+0.14=0.96
0.96+0.04=1
The cumulative relative frequency is calculated using relative frequency.
Relative frequency is calculated by dividing the respective frequency to the sum of frequency.
The cumulative frequency is calculated by adding the frequency of respective class to the sum of frequencies of previous classes.
The cumulative relative frequency is calculated by adding the relative frequency of respective class to the sum of relative frequencies of previous classes.
Answer:
The worker can get a piece of the diamonds using 48÷8 which it is 6.
Step-by-step explanation:
I hope that it is what you're looking for. I hope this helps
Answer:
a. is True.
Step-by-step explanation:
Collinear points are on the same line.
The converse is:
If the points are on the same line the the points are collinear. This is True.
Answer: The median is 28208 the mean is 28234.6
Step-by-step explanation:
The mode is the number that is repeated the most there can be more than one mode.