Answer:
The plant cell wall is strengthened by the molecular structure of cellulose. Cellulose is made up of ß-glucose arranged upside down, this arrangement aided hydrogen bonds between the hydrogen ions of the hydroxyl group and oxygen of the of the ring of same betta -glucose.
The aggregation of the hydrogen bonds give bundles of strong tensile strength of cellulose called the microfibrils (of 60-70 celluose molecules).They are held together in bundled called fibers.T<u>hese is the source of plant cell walls strength.
</u>
<u />
Collagen is the main extracellur matrix (EM) in animal cells.It is a glycoprotein made up of 25%of body protein of animals.Each collagen molecule is made of helix shaped ,three polypeptide chains, wound around each other to form<u> triple helix.</u>The bonds holding helix together are hydrogen and covalent bonds.
Each triple helix is attached to adjacent collagen molecule, parallel to it. The covalent bonds formed a cross link which held the collagen molecules together forming FIBRILS. This gives flexibility to collagen, while maitaing strong tensile strength. This is what is responsible for the structural strength of cell membrane
.
.The EM,is futher reinforced with carbohydrate molecules(proteoglycans) which<u> aided in water movements by osmosis following sodium movements into the matrix.</u>
Answer:
Cardiac Muscle
Explanation:
Your heart is a cardiac muscle so, any muscle related to the heart is a cardiac muscle.
Answer:
Throughout the experiment at hand, the student will likely find that root space does indeed effect the length to which plantswill grow. Although I could not locate the table online, I will offer a general hypothesis for what the experiment will conclude. The student is testing the effects of root space on the way plants grow. The students experiment is well designed, keeping many variables constant and making sure that the amount of root spaceis the only difference between the plantsensures the accuracy of the experiment. Since we know that the experiment is well designed we are able to directly infer the effects of root space limitations without having to account for other factors. We can assume that the limited root space will in turn limit the extent to which a plant can grow. This is because plants need larger and deeper roots to support extended growth. Therefore, the plants in group Bwill grow smaller than those in group A.
Explanation:
mark me brainliest!!
Answer:
the correct answer is the equator