Answer: 217.52 N
Explanation: The applied force is 20 N, the distance covered is 12.0 m and the angle is 25° above the horizontal.
Hence the formulae that defines work done is given by
W = Force × distance
But since the force has been inclined at an angle θ above the horizontal, the horizontal component of force is neccesary to produce the required motion to make the child do work on the wagon.
Hence
Work done = (horizontal component of force) × distance
Work done = F cos θ × distance
Work done = 20 cos 25 × 12 = 217.52 N
Answer:
D: It shows that Frida Kahlo used art to cope with her pain.
Explanation:
Within the text given it shows her emotions being lonely, immobile and in pain. But it all shows her asking her father for art which states that art is her sort of relief and happy place.
Answer:
Explanation:
It can be increased by: increasing the rate of rotation. Increasing the strength of the magnetic field. Increasing the number of turns on the coil.
Hope this helps
plz mark it as brainliest!!!!!!
Answer:
a) v = 0.9167 m / s, b) A = 0.350 m, c) v = 0.9167 m / s, d) A = 0.250 m
Explanation:
a) to find the velocity of the wave let us use the relation
v = λ f
the wavelength is the length that is needed for a complete wave, in this case x = 5.50 m corresponds to a wavelength
λ = x
λ = x
the period is the time for the wave to repeat itself, in this case t = 3.00 s corresponds to half a period
T / 2 = t
T = 2t
period and frequency are related
f = 1 / T
f = 1 / 2t
we substitute
v = x / 2t
v = 5.50 / 2 3
v = 0.9167 m / s
b) the amplitude is the distance from a maximum to zero
2A = y
A = y / 2
A = 0.700 / 2
A = 0.350 m
c) The horizontal speed of the traveling wave (waves) is independent of the vertical oscillation of the particles, therefore the speed is the same
v = 0.9167 m / s
d) the amplitude is
A = 0.500 / 2
A = 0.250 m
Answer:
16.8ohms
Explanation:
According to ohm's law which states that the current passing through a metallic conductor at constant temperature is directly proportional to the potential difference across its ends.
Mathematically, V = IRt where;
V is the voltage across the circuit
I is the current
R is the effective resistance
For a series connected circuit, same current but different voltage flows through the resistors.
If the initial current in a circuit is 19.3A,
V = 19.3R... (1)
When additional resistance of 7.4-Ω is added and current drops to 13.4A, our voltage in the circuit becomes;
V = 13.4(7.4+R)... (2)
Note that the initial resistance is added to the additional resistance because they are connected in series.
Equating the two value of the voltages i.e equation 1 and 2 to get the resistance in the original circuit we will have;
19.3R = 13.4(7.4+R)
19.3R = 99.16+13.4R
19.3R-13.4R = 99.16
5.9R = 99.16
R= 99.16/5.9
R = 16.8ohms
The resistance in the original circuit will be 16.8ohms