Answer:
∵
Explanation:
The tangential acceleration of a cart moving at a constant speed in a circle is:
The angular velocity is constant when the circular speed is constant.
We know that the (instantaneous) tangential velocity of such object is given by:
Now for angular acceleration we have a constant angular speed:
And angular acceleration is related to tangential acceleration as:
Explanation:
Before mitosis, the chromosomes are copied. They then coil up, and each chromosome looks like a letter X in the nucleus of the cell. The chromosomes now consist of two sister chromatids. Mitosis separates these chromatids, so that each new cell has a copy of every chromosome
Answer:
A. Mass
Explanation:
Inertia of an object is the resistance of the object to any change in its state of motion: it means that if an object is at rest, it tends to stay at rest for inertia (unless a net force acts on it), and if it is moving, it tends to continue moving with the same velocity, for inertia.
The inertia also describes how difficult it is to stop/accelerate an object, and it is directly proportional to the mass of the object: in fact, the larger the mass of an object, the more difficult it is to change its state of motion, and this means it has greater inertia.
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.