The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4
Answer:
Explanation:
When the number of slits increases, the intensity of fringes increases.
So, the fringes appear to be more bright.
As we know that the fringe width is inversely proportional to the number of slits, so as the number of slits increases, the fringe width decreases, hence the fringes are narrower, bright and close together.
Answer:
actually ships are made in newtons third law of motion.it states to every action there is equal and opposite reaction. curved is made in downwards to maintain upthrust and to made balance.
actually it prevents ships from drowning and to move with a heavy mass.
The answer to the question is true
The vibration of the string moves the surrounding air molecules. The air molecules move in the form of a wave, traveling a distance dependent upon the magnitude of the vibration.