Answer:
final pressure ( P2) = 467.37 mm Hg
Explanation:
ideal gas:
∴ P1 = 570 mm Hg * ( atm / 760 mm Hg ) = 0.75 atm
∴ T1 = 25 ° C = 298 K
∴ V1 = 1.250 L
∴ R = 0.082 atm L / K mol
⇒ n = P1*V1 / R*T1
⇒ n = (( 0.75 ) * ( 1.25 )) / (( 0.082 ) * ( 298 ))
⇒ n = 0.038 mol gas
∴ T2 = 175 °C ( 448 K )
∴ V2 = 2.270 L
⇒ P2 = nRT2 / V2
⇒ P2 = (( 0.038 ) * ( 0.082 ) * ( 448 )) / 2.270
⇒ P2 = 0.615 atm * ( 760 mm Hg / atm ) = 467.37 mm Hg
Answer:
0.482 ×10²³ molecules
Explanation:
Given data:
Volume of gas = 2.5 L
Temperature of gas = 50°C (50+273 = 323 k)
Pressure of gas = 650 mmHg (650/760 =0.86 atm)
Molecules of N₂= ?
Solution:
PV= nRT
n = PV/RT
n = 0.86 atm × 2.5 L /0.0821 atm. mol⁻¹. k⁻¹. L × 323 k
n = 2.15 atm. L /26.52 atm. mol⁻¹.L
n = 0.08 mol
Number of moles of N₂ are 0.08 mol.
Number of molecules:
one mole = 6.022 ×10²³ molecules
0.08×6.022 ×10²³ = 0.482 ×10²³ molecules
1. the producer is the wheat/plant (producers create their own energy, example is photosynthesis in plants)
2. the consumer is the bird (hint all consumers have mouths. they have to eat/ drink something to produce energy)
I think the answer is C. acidic
Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.