When 100 photons of light pass through a sample and 64 photons are detected after the passage of light, the number of photons transmitted through the sample is 64.
This is based on the methods of calculating the absorbance of light, which is depicted as the higher the amount of light transmission, the lower the amount of light absorbed.
Thus, when 64 photons of light in 100 photons are detected, 64 photons are transmitted, and therefore, the number of photons absorbed is 36.
Hence, hypothetically, if 100 photons of light are transmitted, 0 photons of light will be absorbed.
Therefore, in this case, it is concluded that the correct answer is 64 photos.
Learn more here: brainly.com/question/20678715
Can you post a picture of that the checkings are
A) Hg, or Mercury, is a liquid at room temperature. Hope this helps!!
Answer:
A = 1,13x10¹⁰
Ea = 16,7 kJ/mol
Explanation:
Using Arrhenius law:
ln k = -Ea/R × 1/T + ln(A)
You can graph ln rate constant in x vs 1/T in y to obtain slope: -Ea/R and intercept is ln(A).
Using the values you will obtain:
y = -2006,9 x +23,147
As R = 8,314472x10⁻³ kJ/molK:
-Ea/8,314472x10⁻³ kJ/molK = -2006,9 K⁻¹
<em>Ea = 16,7 kJ/mol</em>
Pre-exponential factor is:
ln A = 23,147
A = e^23,147
<em>A = 1,13x10¹⁰</em>
<em></em>
I hope it helps!