Answer:
Explanation:
Iodine - 125
The atomic symbol of iodine is ¹²⁵₅₃ I
The symbol for iodine is I
The atomic number of iodine is 53,
and the atomic mass of iodine is 125 .
<u>The representation of the atomic symbol is as, the atomic mass is written in uppercase and the atomic number is written in lower case , followed by the symbol of the element .</u>
Iodine is a radio active element , used for many biological process .
It is the second largest -lived radioisotope of iodine .
The first is iodine-129 .
Gee. I'll have to guess at what's "commonly thought".
One thing is the scale. Nobody has an accurate picture of the scale in
his head, because we never see a true-scale drawing. THAT's because
it's almost impossible to draw one on paper.
Example:
Shrink the solar system and everything in it so that the Sun
is the size of a quarter (the 25¢ coin).
Then:
-- The Earth is in orbit around the sun, 8.6 feet from it.
That's close enough that you might think you could find the
shrunken Earth. Unfortunately, it's only 0.009 inch in diameter.
-- The shrunken Jupiter is a 'huge' gas giant almost 0.1 inch in diameter.
It's orbiting the sun, about 45 feet away from it.
-- The shrunken Uranus is another gas giant, about 0.035 inch in diameter.
It's orbiting the sun, about 165 feet away from it.
-- The nearest star outside of the solar system is 441 MILES away !
On the same shrunken scale !
And there's NOTHING between here and there !
I think that's the biggest point to make about the REAL solar system ...
its utter emptiness. With the sun reduced to something you can hold
in your hand, the planets are the size of grains of sand, with hundreds
of feet of nothingness between them.
Same for its mass: The solar system is approximately nothing but a star.
That's it. A star, with some dust and some gas around it, and here and there
in the neighborhood a microscopic pebble or a chip of mineral. But mostly
it's nothing but a star ... if you went around and gathered up all that other
rubbish in the same bag and called it a part of the same solar system, the
sun would still have more than 99% of the total mass, and the bag would
hold less than 1% of it.
Book ... It's getting late, Hillary's fading, and that's all I can think of.
I hope this much is some help.
Answer: It's colder.
Explanation: Well for starters Valparaiso is further away from the equator, and Australia is already really hot. But say that Valparaiso is further from the equator should be good enough.
Answer:
- <em>The solution that has the highest concentration of hydroxide ions is </em><u>d. pH = 12.59.</u>
Explanation:
You can solve this question using just some chemical facts:
- pH is a measure of acidity or alkalinity: the higher the pH the lower the acidity and the higher the alkalinity.
- The higher the concentration of hydroxide ions the lower the acidity or the higher the alkalinity of the solution, this is the higher the pH.
Hence, since you are asked to state the solution with the highest concentration of hydroxide ions, you just pick the highest pH. This is the option d, pH = 12.59.
These mathematical relations are used to find the exact concentrations of hydroxide ions:
- pH + pOH = 14 ⇒ pOH = 14 - pH
- pOH = - log [OH⁻] ⇒
![[OH^-]=10^{-pOH}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D)
Then, you can follow these calculations:
Solution pH pOH [OH⁻]
a. 3.21 14 - 3.21 = 10.79 antilogarithm of 10.79 = 1.6 × 10⁻¹¹
b. 7.00 14 - 7.00 = 7.00 antilogarithm of 7.00 = 10⁻⁷
c. 7.93 14 - 7.93 = 6.07 antilogarithm of 6.07 = 8.5 × 10⁻⁷
d. 12.59 14 - 12.59 = 1.41 antilogarithm of 1.41 = 0.039
e. 9.82 14 - 9.82 = 4.18 antilogarithm of 4.18 = 6.6 × 10⁻⁵
From which you see that the highest concentration of hydroxide ions is for pH = 12.59.
QPOE Files
The x-ray data are stored in QPOE files (Quick Position-Ordered Events, *.qp) rather than image arrays. These are lists of photons identified by several quantities, including the position on the detector, pulse height, and arrival time. Note that, unlike IRAF images, QPOE files have no associated header file, and are always stored in the current directory, unless explicitly specified otherwise. Non-PROS IRAF tasks can also access QPOE data files in place of image arrays.