Give the person above me brainless
Answer: Equilibrium concentration of
at
is 4.538 M
Explanation:
Initial concentration of
= 0.056 M
Initial concentration of
= 4.60 M
The given balanced equilibrium reaction is,
![COCl_2+2Cl^-\rightleftharpoons [CoCl_4]^{2-}+6H_2O](https://tex.z-dn.net/?f=COCl_2%2B2Cl%5E-%5Crightleftharpoons%20%5BCoCl_4%5D%5E%7B2-%7D%2B6H_2O)
Initial conc. 0.056 M 4.60 M 0 M 0 M
At eqm. conc. (0.056-x) M (4.60-2x) M (x) M (6x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CoCl_4]^{2-}\times [H_2O]^6}{[CoCl_2]^2\times [Cl^-]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCoCl_4%5D%5E%7B2-%7D%5Ctimes%20%5BH_2O%5D%5E6%7D%7B%5BCoCl_2%5D%5E2%5Ctimes%20%5BCl%5E-%5D%5E2%7D)
Given : equilibrium concentration of
=x = 0.031 M
Concentration of
= (4.60-2x) M =
=4.538 M
Thus equilibrium concentration of
at
is 4.538 M
Answer:
Molecularity of the rate determining step = 2
Explanation:
Step 1 (slow): H₂O₂ + I⁻ -----> H₂O + OI⁻
Step 2 (fast): H₂O₂ + OI⁻ -----> H₂O + O₂ + I⁻
The rate determining step in a reaction mechanism is also considered as slowest step.
Slowest step is also considered its highest activation energy in energy profile diagram.
In this case intermediate (IO⁻) is formed.
Step 1 considered as a slowest step.
So, Rate = K [H₂O₂][I⁻]
Molecularity = 2
Answer:Noble gases:
are highly reactive.
react only with other gases.
do not appear in the periodic table.
are not very reactive with other elements.
Explanation:Noble gases:
are highly reactive.
react only with other gases.
do not appear in the periodic table.
are not very reactive with other elements.
It would be in the transition metals